热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

如何在matplotlib中利用mpldatacursor实现一个交互式数据光标

如何在matplotlib中利用mpldatacursor实现一个交互式数据光标?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,

如何在matplotlib中利用mpldatacursor实现一个交互式数据光标?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

简介

mpldatacursor包可以为matplotlib提供交互式的数据光标(弹出式注释框)。
它的典型功能是:

  • 鼠标左键单击图表数据元素时会弹出文本框显示最近的数据元素的坐标值。

  • 鼠标右键单击文本框取消显示数据光标。

  • d键时切换显示\关闭数据光标。

如何在matplotlib中利用mpldatacursor实现一个交互式数据光标 

安装

如果matplotlib版本低于3.3可以直接使用pip安装

pip install mpldatacursor

如果matplotlib版本高于3.3,虽然pip安装成功,但是运行案例时会出现AttributeError: 'ScalarFormatter' object has no attribute 'pprint_val'错误。

通过查看源码可知:

try:
  # Again, older versions of mpl
  return formatter.pprint_val(x)
except AttributeError:
  # 3.3.0 or later
  return formatter.format_data_short(x)

通过分析,预计是因为使用了国内pip源,mpldatacursor包还未修复该问题(pip 安装的 mpldatacursor包版本号是0.7.1)。

因此,建议到https://github.com/joferkington/mpldatacursor

下载源码,进行源码安装(源码安装的 mpldatacursor包版本号是0.7.dev0)。

python setup.py install

基本应用(官方实例)解析

应用流程

mpldatacursor包基本应用方式比较简单:

  • mpldatacursor包中导入datacursor函数。

  • 应用datacursor函数。

 包结构

查看源码可知,mpldatacursor包的结构如下:

mpldatacursor
   convenience.py
   datacursor.py
   pick_info.py
   __init__.py

datacursor函数定义在convenience.py中,datacursor函数的返回值是DataCursor类实例。
DataCursor类定义在datacursor.py中。
pick_info.py定义了一系列和弹出文本框相关的函数,供DataCursor类调用。

datacursor函数定义

datacursor函数定义可知:

  • datacursor函数可以不提供参数,这样图像内所有数据元素都会应用交互式数据光标。

  • datacursor函数可以指定哪些数据元素应用交互式数据光标。

def datacursor(artists=None, axes=None, **kwargs):
  """
  Create an interactive data cursor for the specified artists or specified
  axes. The data cursor displays information about a selected artist in a
  "popup" annotation box.

  If a specific sequence of artists is given, only the specified artists will
  be interactively selectable. Otherwise, all manually-plotted artists in
  *axes* will be used (*axes* defaults to all axes in all figures).

  Parameters
  -----------
  artists : a matplotlib artist or sequence of artists, optional
    The artists to make selectable and display information for. If this is
    not specified, then all manually plotted artists in `axes` will be
    used.
  axes : a matplotlib axes of sequence of axes, optional
    The axes to selected artists from if a sequence of artists is not
    specified. If `axes` is not specified, then all available axes in all
    figures will be used.
  tolerance : number, optional
    The radius (in points) that the mouse click must be within to select
    the artist. Default: 5 points.
  formatter : callable, optional
    A function that accepts arbitrary kwargs and returns a string that will
    be displayed with annotate. Often, it is convienent to pass in the
    format method of a template string, e.g.
    ``formatter="{label}".format``.
    Keyword arguments passed in to the `formatter` function:
      `x`, `y` : floats
        The x and y data coordinates of the clicked point
      `event` : a matplotlib ``PickEvent``
        The pick event that was fired (note that the selected
        artist can be accessed through ``event.artist``).
      `label` : string or None
        The legend label of the selected artist.
      `ind` : list of ints or None
        If the artist has "subitems" (e.g. points in a scatter or
        line plot), this will be a list of the item(s) that were
        clicked on. If the artist does not have "subitems", this
        will be None. Note that this is always a list, even when
        a single item is selected.
    Some selected artists may supply additional keyword arguments that
    are not always present, for example:
      `z` : number
        The "z" (usually color or array) value, if present. For an
        ``AxesImage`` (as created by ``imshow``), this will be the
        uninterpolated array value at the point clicked. For a
        ``PathCollection`` (as created by ``scatter``) this will be the
        "c" value if an array was passed to "c".
      `i`, `j` : ints
        The row, column indicies of the selected point for an
        ``AxesImage`` (as created by ``imshow``)
      `s` : number
        The size of the selected item in a ``PathCollection`` if a size
        array is specified.
      `c` : number
        The array value displayed as color for a ``PathCollection``
        if a "c" array is specified (identical to "z").
      `point_label` : list
        If `point_labels` is given when the data cursor is initialized
        and the artist has "subitems", this will be a list of the items
        of `point_labels` that correspond to the selected artists.
        Note that this is always a list, even when a single artist is
        selected.
      `width`, `height`, `top`, `bottom` : numbers
        The parameters for ``Rectangle`` artists (e.g. bar plots).
  point_labels : sequence or dict, optional
    For artists with "subitems" (e.g. Line2D's), the item(s) of
    `point_labels` corresponding to the selected "subitems" of the artist
    will be passed into the formatter function as the "point_label" kwarg.
    If a single sequence is given, it will be used for all artists with
    "subitems". Alternatively, a dict of artist:sequence pairs may be given
    to match an artist to the correct series of point labels.
  display : {"one-per-axes", "single", "multiple"}, optional
    Controls whether more than one annotation box will be shown.
    Default: "one-per-axes"
  draggable : boolean, optional
    Controls whether or not the annotation box will be interactively
    draggable to a new location after being displayed. Defaults to False.
  hover : boolean, optional
    If True, the datacursor will "pop up" when the mouse hovers over an
    artist. Defaults to False. Enabling hover also sets
    `display="single"` and `draggable=False`.
  props_override : function, optional
    If specified, this function customizes the parameters passed into the
    formatter function and the x, y location that the datacursor "pop up"
    "points" to. This is often useful to make the annotation "point" to a
    specific side or corner of an artist, regardless of the position
    clicked. The function is passed the same kwargs as the `formatter`
    function and is expected to return a dict with at least the keys "x"
    and "y" (and probably several others).
    Expected call signature: `props_dict = props_override(**kwargs)`
  keybindings : boolean or dict, optional
    By default, the keys "d" and "t" will be bound to deleting/hiding all
    annotation boxes and toggling interactivity for datacursors,
    respectively. If keybindings is False, the ability to hide/toggle
    datacursors interactively will be disabled. Alternatively, a dict of
    the form {'hide':'somekey', 'toggle':'somekey'} may specified to
    customize the keyboard shortcuts.
  date_format : string, optional
    The strftime-style formatting string for dates. Used only if the x or y
    axes have been set to display dates. Defaults to "%x %X".
  display_button: int, optional
    The mouse button that will triggers displaying an annotation box.
    Defaults to 1, for left-clicking. (Common options are 1:left-click,
    2:middle-click, 3:right-click)
  hide_button: int or None, optional
    The mouse button that triggers hiding the selected annotation box.
    Defaults to 3, for right-clicking. (Common options are 1:left-click,
    2:middle-click, 3:right-click, None:hiding disabled)
  keep_inside : boolean, optional
    Whether or not to adjust the x,y offset to keep the text box inside the
    figure. This option has no effect on draggable datacursors. Defaults to
    True. Note: Currently disabled on OSX and NbAgg/notebook backends.
  **kwargs : additional keyword arguments, optional
    Additional keyword arguments are passed on to annotate.

  Returns
  -------
  dc : A ``mpldatacursor.DataCursor`` instance
  """

官方实例源码

import matplotlib.pyplot as plt
import numpy as np
from mpldatacursor import datacursor

data = np.outer(range(10), range(1, 5))

fig, ax = plt.subplots()
lines = ax.plot(data)
ax.set_title('Click somewhere on a line')

datacursor()

plt.show()

限定仅某数据元素使用交互式光标

本实例中,有两个数据元素(artist):line1line2datacursor(line1)函数提供了参数line1,因此只有line1可以使用交互式数据光标,line2则没有效果。

import matplotlib.pyplot as plt
import numpy as np
from mpldatacursor import datacursor
fig, ax = plt.subplots()
line1 = ax.plot([1,3])
line2 = ax.plot([1,2])
ax.set_title('Click somewhere on a line')
datacursor(line1)
plt.show()

如何在matplotlib中利用mpldatacursor实现一个交互式数据光标

其他官方实例功能概述

mpldatacursor提供了大量实际案例,详见https://github.com/joferkington/mpldatacursor/tree/master/examples。不再一一分析,仅简单说明功能。

  • basic_single_annotation.py:在多子图情况下,默认每个子图的数据光标是独立的,即每个子图都可以显示数据光标,相互不影响。使用datacursor(display='single')参数后,仅在当前子图显示数据光标,其余子图显示的数据光标自动关闭。

  • change_popup_color.py:提供了两个案例,一个取消了提示框的边框,一个将提示框的背景色改为白色。

  • hover_example.py:将数据光标的触发方式由鼠标左键单击改为鼠标悬浮。

  • show_artist_labels.py:将数据光标默认显示的坐标值改为数据元素的label

  • highlighting_example.py:点击数据元素时,数据元素会高亮(黄色)显示。

  • draggable_example.py:在一个子图中,同时显示多个数据光标。

  • customize_keyboard_shortcuts.py:重新绑定数据光标快捷键。

  • labeled_points_example.py:自定义数据点标签。

  • date_example.py:日期数据显示。

  • bar_example.py:在柱状图中,在每个柱上方鼠标悬浮触发数据光标。

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注编程笔记行业资讯频道,感谢您对编程笔记的支持。


推荐阅读
  • 深入理解Redis的数据结构与对象系统
    本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。 ... [详细]
  • 基于KVM的SRIOV直通配置及性能测试
    SRIOV介绍、VF直通配置,以及包转发率性能测试小慢哥的原创文章,欢迎转载目录?1.SRIOV介绍?2.环境说明?3.开启SRIOV?4.生成VF?5.VF ... [详细]
  • 在创建新的Android项目时,您可能会遇到aapt错误,提示无法打开libstdc++.so.6共享对象文件。本文将探讨该问题的原因及解决方案。 ... [详细]
  • 本文详细介绍了如何准备和安装 Eclipse 开发环境及其相关插件,包括 JDK、Tomcat、Struts 等组件的安装步骤及配置方法。 ... [详细]
  • Python 异步编程:ASGI 服务器与框架详解
    自 Python 3.5 引入 async/await 语法以来,异步编程迅速崛起,吸引了大量开发者的关注。本文将深入探讨 ASGI(异步服务器网关接口)及其在现代 Python Web 开发中的应用,介绍主流的 ASGI 服务器和框架。 ... [详细]
  • 通过Web界面管理Linux日志的解决方案
    本指南介绍了一种利用rsyslog、MariaDB和LogAnalyzer搭建集中式日志管理平台的方法,使用户可以通过Web界面查看和分析Linux系统的日志记录。此方案不仅适用于服务器环境,还提供了详细的步骤来确保系统的稳定性和安全性。 ... [详细]
  • 本文详细解释了华为ENSP模拟器中常用的命令,涵盖用户模式、系统模式、接口模式和地址池视图模式下的操作。这些命令对于进行计算机网络实验至关重要,帮助用户更好地理解和配置路由器及PC机的通信。 ... [详细]
  • 华为USG基于源地址的多出口策略路由配置
    网络拓扑如下:组网情况:企业用户主要有技术部(VLAN10)和行政部(VLAN20),通过汇聚交换机连接到USG。企业分别通过两个不同运营商(ISP1和ISP2)连接到 ... [详细]
  • Python第三方库安装的多种途径及注意事项
    本文详细介绍了Python第三方库的几种常见安装方法,包括使用pip命令、集成开发环境(如Anaconda)以及手动文件安装,并提供了每种方法的具体操作步骤和适用场景。 ... [详细]
  • 本文详细介绍了如何通过RPM包在Linux系统(如CentOS)上安装MySQL 5.6。涵盖了检查现有安装、下载和安装RPM包、配置MySQL以及设置远程访问和开机自启动等步骤。 ... [详细]
  • Kubernetes 持久化存储与数据卷详解
    本文深入探讨 Kubernetes 中持久化存储的使用场景、PV/PVC/StorageClass 的基本操作及其实现原理,旨在帮助读者理解如何高效管理容器化应用的数据持久化需求。 ... [详细]
  • 解决Anaconda安装TensorFlow时遇到的TensorBoard版本问题
    本文介绍了在使用Anaconda安装TensorFlow时遇到的“Could not find a version that satisfies the requirement tensorboard”错误,并提供详细的解决方案,包括创建虚拟环境和配置PyCharm项目。 ... [详细]
  • 本文介绍了在Windows环境下使用pydoc工具的方法,并详细解释了如何通过命令行和浏览器查看Python内置函数的文档。此外,还提供了关于raw_input和open函数的具体用法和功能说明。 ... [详细]
  • 本文详细介绍了中央电视台电影频道的节目预告,并通过专业工具分析了其加载方式,确保用户能够获取最准确的电视节目信息。 ... [详细]
  • 如何彻底清除顽固软件如360
    本文详细介绍了如何彻底卸载难以删除的软件,如360安全卫士。这类软件不仅难以卸载,还会在开机时启动多个应用,影响系统性能。我们将提供两种有效的方法来帮助您彻底清理这些顽固软件。 ... [详细]
author-avatar
拍友2502869537
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有