之所以写这个程序,是因为某天晚上无聊,室友正在学习MATLAB,于是提议写一个三体运动的物理模拟程序来练练手。就此,我也写一份该程序来为室友做一个参考标准,希望可以帮助室友进步的更快。
做出来的效果图大概这样子
效果图
本系列所有代码均在我的Github中存有备份,可下载后直接运行,点击Github: HanpuLiang/Three-Body-by-MATLAB即可进入。
三体一般指的就是三个物体受到相互之间的引力作用的影响而运动。一般来说,因为其运动方程太过于复杂,所以并没有解析解,并且因为对初值的敏感性,略微变化一点初始条件就会对未来长远的结果产生巨大的影响。
在没有解析解的情况下,只能通过数值解的方法对微分方程组求解。所以数值解的误差也受计算步长的影响,计算步长越小越精确,但是因为数据一定会有精度,并不能真正的无穷小,所以实际上在时间足够长以后依旧会产生很大的误差。
综合很多原因,才会有了大刘《三体》的剧情,不然凭借三体人那么厉害的科技水平还怎么还是选择来搞地球。
不过说到底,解不开这样的问题还是目前人类的数学水平不行,或许以后就有办法了呢?
但是我们这里并不用分析力学的方法求解,因为手头没有演草纸,推方程有点麻烦,所以直接用经典力学的方法去模拟整个运动,这样子相信有点物理基础的大家也是可以看懂的。
我们首先需要思考:
也就是说,我们只需要集中在三个物理量上面就好:坐标,速度(大小与方向),加速度(大小与方向)。这就是我们所需要,随着时间变化的,计算的所有数据。
接下来就要开始引进物理公式了。
首先,两个物体之间的万有引力可以通过公式
正交分解示意图
首先是坐标,这个已经是分解到了轴与轴这个坐标系上了,毕竟我们写出来的就是两个点的坐标,如果谁还不会用坐标点绘图就可以点右上角退出界面了。
其次是速度与加速度。我们以物体自身为原点建立坐标系,速度大小为,方向相对轴正方向为度,可以得到一个矢量如图所示。根据高中知识,就可以得到其在轴与轴上的分解为
同样的,加速度也可以这样子分解,得到
而且,轴上的加速度只会影响轴上的速度,所以我们分解后,在计算时,只需要分别计算轴的坐标变化即可,不需要再考虑方向,即
这样子,我们就将方向成功分解为轴分解进行计算,大大化简了繁琐的方向变化问题。
但是这只是两个物体之间的相互作用,如果是三个物体的话,其中一个物体就要受到两个力的作用。
实际上两个力是没有受到干扰的,所以当其分解到轴后,直接将其对应轴上的加速度直接相加即可得到总的加速度,也就是
其中就是物体1在轴上的总的加速度,它由两个分加速度组成:来自物体2对物体1的力的、在轴的加速度和来自物体3对物体1的。
其他同理,这样子就可以完美解决所有问题了。
根据上面的公式分析,加速度、速度、距离之间如何变化已经很清楚了,三个物体之间的各个物理量的正交分解也很明确了,已经可以转化为了代码可以实现的情况,下面我们就需要将公式化成代码。
不过因为这一篇博客已经比较长了,所以将本篇作为理论分析篇,下一篇博客中我们再进行详细解释代码。
如果这一篇我讲的比较不错的话,还希望可以点个赞、加个收藏、来个关注噢。