热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

如何使用Scipy–Python从混合信号中提取音频波?

如何使用Scipy–Python从混合信号中提取音频波?原文

如何使用 Scipy–Python 从混合信号中提取音频波?

原文:https://www . geeksforgeeks . org/如何使用 scipy-python 从混合信号中提取音频波/

先决条件: Scipy

频谱分析是指分析波的频谱/响应。如标题所示,本文涉及从混合信号中提取音频波,具体过程可以解释为:

假设我们有 3 个混合音频信号,频率分别为 50Hz、1023Hz 和 1735Hz。除了这些信号之外,我们还将事先对信号进行噪声处理。光谱分析将通过使用滤波器来完成,这样我们就可以分离出信号。根据需要,我们可以根据想要提取的信号频率来调整信号。

方法



  • 导入模块

  • 指定条件,如样本数量,采样频率,内部采样时间&创建我们的混合音频波

  • 给音频信号添加噪声

  • 滤波器窗口的估计和截止频率的计算

  • 创建一个过滤器来过滤噪音

  • 绘制噪声信号、滤波器的频率响应、提取的音频波、混合音频信号的频谱、我们提取的音频信号的频谱

  • 显示图

程序:

Python 3


# Original, high sample rate signal
# Let us imagine this is like our analog signal
from scipy import signal
from scipy.fft import fft
import numpy as np
import matplotlib.pyplot as plt
# Number of samples
N_sample = 512
# Sampling frequency
fs = 10000
# inter sample time = 0.001s = 1kHz sampling
dt = 1/fs
# time vector
t = np.arange(0, N_sample)*dt
# Create signal vector that is the sum of 50 Hz, 1023 Hz, and 1735 Hz
Signal = np.sin(2*np.pi*50*t) + np.sin(2*np.pi*1023*t)+np.sin(2*np.pi*1735*t)
# Add random noise to the signal
Signal = Signal+np.random.normal(0, .1, Signal.shape)
# Part A: Estimation of Length and Window
# Select design  Specification
# Lower stopband frequency in Hz
fstop_L = 500
# Lower passband frequency in HZ
fpass_L = 800
# Upper stopband frequency in Hz
fstop_U = 1500
# Upper passband frequency in HZ
fpass_U = 1200
# Calculations
# Normalized lower transition band w.r.t. fs
del_f1 = abs(fpass_L-fstop_L)/fs
# Normalized upper transition band w.r.t. fs
del_f2 = abs(fpass_U-fstop_U)/fs
# Filter length using selected window based
# on Normalized lower transition band
N1 = 3.3/del_f1
# Filter length using selected window based
# on Normalized upper transition band
N2 = 3.3/del_f2
print('Filter length based on lower transition band:', N1)
print('Filter length based on upper transition band:', N2)
# Select length as the maximum of the N1 and N2
# and if it is even, make it next higher integer
N = int(np.ceil(max(N1, N2)))
if(N % 2 == 0):
    N = N+1
print('Selected filter length :', N)
# Calculate lower and uper cut-off frequencies
# Lower cut-off frequency in Hz
fL = (fstop_L+fpass_L)/2
# Upper cut-off frequency in Hz
fU = (fstop_U+fpass_U)/2
# Normalized Lower cut-off frequency in (w/pi) rad
wL = 2*fL/fs
# Normalized upper cut-off frequency in (w/pi) rad
wU = 2*fU/fs
# Cutoff frequency array
cutoff = [wL, wU]
# Since the given specification of Stopband attenuation = 50 dB
# and Passband ripple = 0.05 dB, atleast satisfy with
# Hamming window, we have to choose it.
# Determine Filter coefficients
# Call filter design function using Hamming window
b_ham = signal.firwin(N, cutoff, window="hamming", pass_zero="bandpass")
# Determine Frequency response of the filters
# Calculate response h at specified frequency
# points w for Hamming window
w, h_ham = signal.freqz(b_ham, a=1)
# Calculate Magnitude in dB
# Calculate magnitude in decibels
h_dB_ham = 20*np.log10(abs(h_ham))
a = [1]
# Filter the noisy signal by designed filter
# using signal.filtfilt
filtOut = signal.filtfilt(b_ham, a, Signal)
# Plot filter magnitude and phase responses using
# subplot. Digital frequency w converted in analog
# frequency
fig = plt.figure(figsize=(12, 18))
# Original signal
sub1 = plt.subplot(5, 1, 1)
sub1.plot(t[0:200], Signal[0:200])
sub1.set_ylabel('Amplitude')
sub1.set_xlabel('Time')
sub1.set_title('Noisy signal', fontsize=20)
# Magnitude response Plot
sub2 = plt.subplot(5, 1, 2)
sub2.plot(w*fs/(2*np.pi), h_dB_ham, 'r', label='Bandpass filter',
          linewidth='2')  # Plot for magnitude response window
sub2.set_ylabel('Magnitude (db)')
sub2.set_xlabel('Frequency in Hz')
sub2.set_title('Frequency response of Bandpass Filter', fontsize=20)
sub2.axis = ([0,  fs/2,  -110,  5])
sub2.grid()
sub3 = plt.subplot(5, 1, 3)
sub3.plot(t[0:200], filtOut[0:200], 'g', label='Filtered signal',
          linewidth='2')  # Plot for magnitude response window
sub3.set_ylabel('Magnitude ')
sub3.set_xlabel('Time')
sub3.set_title('Filtered output of Band pass Filter', fontsize=20)
# Show spectrum of noisy input signal
Sigf = fft(Signal)  # Compute FFT of noisy signal
sub4 = plt.subplot(5, 1, 4)
xf = np.linspace(0.0, 1.0/(2.0*dt), (N_sample-1)//2)
sub4.plot(xf, 2.0/N_sample * np.abs(Sigf[0:(N_sample-1)//2]))
sub4.set_ylabel('Magnitude')
sub4.set_xlabel('Frequency in Hz')
sub4.set_title('Frequency Spectrum of Original Signal', fontsize=20)
sub4.grid()
# Show spectrum of filtered output signal
Outf = fft(filtOut)  # Compute FFT of filtered signal
sub5 = plt.subplot(5, 1, 5)
xf = np.linspace(0.0, 1.0/(2.0*dt), (N_sample-1)//2)
sub5.plot(xf, 2.0/N_sample * np.abs(Outf[0:(N_sample-1)//2]))
sub5.set_ylabel('Magnitude')
sub5.set_xlabel('Frequency in Hz')
sub5.set_title('Frequency Spectrum of Filtered Signal', fontsize=20)
sub5.grid()
fig.tight_layout()
plt.show()

输出:


推荐阅读
  • 基因组浏览器中的Wig格式解析
    本文详细介绍了Wiggle(Wig)格式及其在基因组浏览器中的应用,涵盖variableStep和fixedStep两种主要格式的特点、适用场景及具体使用方法。同时,还提供了关于数据值和自定义参数的补充信息。 ... [详细]
  • 基于KVM的SRIOV直通配置及性能测试
    SRIOV介绍、VF直通配置,以及包转发率性能测试小慢哥的原创文章,欢迎转载目录?1.SRIOV介绍?2.环境说明?3.开启SRIOV?4.生成VF?5.VF ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 导航栏样式练习:项目实例解析
    本文详细介绍了如何创建一个具有动态效果的导航栏,包括HTML、CSS和JavaScript代码的实现,并附有详细的说明和效果图。 ... [详细]
  • 本文介绍了如何在C#中启动一个应用程序,并通过枚举窗口来获取其主窗口句柄。当使用Process类启动程序时,我们通常只能获得进程的句柄,而主窗口句柄可能为0。因此,我们需要使用API函数和回调机制来准确获取主窗口句柄。 ... [详细]
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • 本文探讨了如何优化和正确配置Kafka Streams应用程序以确保准确的状态存储查询。通过调整配置参数和代码逻辑,可以有效解决数据不一致的问题。 ... [详细]
  • 本教程涵盖OpenGL基础操作及直线光栅化技术,包括点的绘制、简单图形绘制、直线绘制以及DDA和中点画线算法。通过逐步实践,帮助读者掌握OpenGL的基本使用方法。 ... [详细]
  • 使用GDI的一些AIP函数我们可以轻易的绘制出简 ... [详细]
  • 本文介绍如何使用 NSTimer 实现倒计时功能,详细讲解了初始化方法、参数配置以及具体实现步骤。通过示例代码展示如何创建和管理定时器,确保在指定时间间隔内执行特定任务。 ... [详细]
  • 本文详细介绍了Java中org.w3c.dom.Text类的splitText()方法,通过多个代码示例展示了其实际应用。该方法用于将文本节点在指定位置拆分为两个节点,并保持在文档树中。 ... [详细]
author-avatar
乖扬123_829
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有