热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

如何利用深度学习模型实现多任务学习?这里有三点经验

 

 

文章转载自机器之心,有做多任务学习相关的同学可以加群709165514讨论学习下,

 

Taboola 算法开发者 Zohar Komarovsky 介绍了他们在利用深度学习模型实现多任务学习(MTL)时遇到的几个典型问题及解决方案。

在过去的一年里,我和我的团队一直致力于为 Taboola feed 提供个性化用户体验。我们运用多任务学习(Multi-Task Learning,MTL),在相同的输入特征集上预测多个关键性能指标(Key Performance Indicator,KPI),然后使用 TensorFlow 实现深度学习模型。回想最初的时候,我们感觉(上手)MTL 比现在要困难很多,所以我希望在这里分享一些经验总结。

现在已经有很多关于利用深度学习模型实现 MTL 的文章。在本文中,我准备分享一些利用神经网络实现 MTL 时需要考虑的具体问题,同时也会展示一些基于 TensorFlow 的简单解决方案。

共享即关怀

我们准备从参数硬共享(hard parameter sharing)的基础方法开始。硬共享表示我们使用一个共享的子网络,下接各个任务特定的子网络。

如何利用深度学习模型实现多任务学习?这里有三点经验

在 TensorFlow 中,实现这样一个模型的简单方法是使用带有 multi_head 的 Estimator。这个模型和其他神经网络架构相比没什么不同,所以你可以自己想想,有哪些可能出错的地方?

第一点:整合损失

我们的 MTL 模型所遇到的第一个挑战是为多个任务定义一个损失函数。既然每个任务都有一个定义良好的损失函数,那么多任务就会有多个损失。

我们尝试的第一个方法是将不同损失简单相加。很快我们就发现,虽然某一个任务会收敛得到不错的结果,其他的却表现很差。进一步研究后,可以很容易地明白原因:不同任务损失的尺度差异非常大,导致整体损失被某一个任务所主导,最终导致其他任务的损失无法影响网络共享层的学习过程。

一个简单的解决方案是,将损失简单相加替换为加权和,以使所有任务损失的尺度接近。但是,这引入了另一个可能需要不时进行调节的超参数。

幸运的是,我们发现了一篇非常棒的论文《Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics》,提出引入不确定性来确定 MTL 中损失的权重:在每个任务的损失函数中学习另一个噪声参数(noise parameter)。此方法可以接受多任务(可以是回归和分类),并统一所有损失的尺度。这样,我们就能像一开始那样,直接相加得到总损失了。

与损失加权求和相比,该方法不仅得到了更好的结果,而且还可以不再理会额外的权重超参数。论文作者提供的 Keras 实现参见:https://github.com/yaringal/multi-task-learning-example/blob/master/multi-task-learning-example.ipynb。

第二点:调节学习速率

调节神经网络有一个通用约定:学习速率是最重要的超参数之一。所以我们尝试调节学习速率。我们发现,对于某一个任务 A 而言,存在一个特别适合的学习速率,而对于另一个任务 B,则有不同的适合学习速率。如果选择较高的学习速率,可能在某个任务上出现神经元死亡(由于大的负梯度,导致 Relu 函数永久关闭,即 dying ReLU),而使用较低的学习速率,则会导致其他任务收敛缓慢。应该怎么做呢?我们可以在各个「头部」(见上图,即各任务的子网络)分别调节各自的学习速率,而在共享网络部分,使用另一个学习速率。

虽然听上去很复杂,但其实非常简单。通常,在利用 TensorFlow 训练神经网络时,使用的是:

optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

AdamOptimizer 定义如何应用梯度,而 minimize 则完成具体的计算和应用。我们可以将 minimize 替换为我们自己的实现方案,在应用梯度时,为计算图中的各变量使用各自适合的学习速率。

all_variables = shared_vars + a_vars + b_vars
all_gradients = tf.gradients(loss, all_variables)

shared_subnet_gradients = all_gradients[:len(shared_vars)]
a_gradients = all_gradients[len(shared_vars):len(shared_vars + a_vars)]
b_gradients = all_gradients[len(shared_vars + a_vars):]

shared_subnet_optimizer = tf.train.AdamOptimizer(shared_learning_rate)
a_optimizer = tf.train.AdamOptimizer(a_learning_rate)
b_optimizer = tf.train.AdamOptimizer(b_learning_rate)

train_shared_op = shared_subnet_optimizer.apply_gradients(zip(shared_subnet_gradients, shared_vars))
train_a_op = a_optimizer.apply_gradients(zip(a_gradients, a_vars))
train_b_op = b_optimizer.apply_gradients(zip(b_gradients, b_vars))

train_op = tf.group(train_shared_op, train_a_op, train_b_op)    

友情提醒:这个技巧其实在单任务网络中也很实用。

第三点:将估计作为特征

当我们完成了第一阶段的工作,为预测多任务创建好神经网络后,我们可能希望将某一个任务得到的估计(estimate)作为另一个任务的特征。在前向传递(forward-pass)中,这非常简单。估计是一个张量,可以像任意一个神经层的输出一样进行传递。但在反向传播中呢?

假设将任务 A 的估计作为特征输入给 B,我们可能并不希望将梯度从任务 B 传回任务 A,因为我们已经有了任务 A 的标签。对此不用担心,TensorFlow 的 API 所提供的 tf.stop_gradient 会有所帮助。在计算梯度时,它允许你传入一个希望作为常数的张量列表,这正是我们所需要的。

all_gradients = tf.gradients(loss, all_variables, stop_gradients=stop_tensors)    

和上面一样,这个方法对 MTL 网络很有用,但不止如此。该技术可用在任何你希望利用 TensorFlow 计算某个值并将其作为常数的场景。例如,在训练生成对抗网络(Generative Adversarial Network,GAN)时,你不希望将对抗示例反向传播到生成过程中。

下一步

我们的模型已经上线运行,Taboola feed 也已经是个性化的了。但是,还有很多可以提升改进的空间,以及许多有趣的结构可以探索。在我们的应用场景中,预测多任务也意味着基于多个 KPI 完成决策。这可能比基于单个 KPI 的更复杂……不过这就是另一个全新的问题了。

 

原文链接:https://engineering.taboola.com/deep-multi-task-learning-3-lessons-learned/


推荐阅读
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 本文详细介绍了在 Ubuntu 系统上搭建 Hadoop 集群时遇到的 SSH 密钥认证问题及其解决方案。通过本文,读者可以了解如何在多台虚拟机之间实现无密码 SSH 登录,从而顺利启动 Hadoop 集群。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 深入解析 OpenSSL 生成 SM2 证书:非对称加密技术与数字证书、数字签名的关联分析
    本文深入探讨了 OpenSSL 在生成 SM2 证书过程中的技术细节,重点分析了非对称加密技术在数字证书和数字签名中的应用。非对称加密通过使用公钥和私钥对数据进行加解密,确保了信息传输的安全性。公钥可以公开分发,用于加密数据或验证签名,而私钥则需严格保密,用于解密数据或生成签名。文章详细介绍了 OpenSSL 如何利用这些原理生成 SM2 证书,并讨论了其在实际应用中的安全性和有效性。 ... [详细]
  • 本文介绍了UUID(通用唯一标识符)的概念及其在JavaScript中生成Java兼容UUID的代码实现与优化技巧。UUID是一个128位的唯一标识符,广泛应用于分布式系统中以确保唯一性。文章详细探讨了如何利用JavaScript生成符合Java标准的UUID,并提供了多种优化方法,以提高生成效率和兼容性。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 在《Python编程基础》课程中,我们将深入探讨Python中的循环结构。通过详细解析for循环和while循环的语法与应用场景,帮助初学者掌握循环控制语句的核心概念和实际应用技巧。此外,还将介绍如何利用循环结构解决复杂问题,提高编程效率和代码可读性。 ... [详细]
  • 技术日志:Ansible的安装及模块管理详解 ... [详细]
  • 浅层神经网络解析:本文详细探讨了两层神经网络(即一个输入层、一个隐藏层和一个输出层)的结构与工作原理。通过吴恩达教授的课程,读者将深入了解浅层神经网络的基本概念、参数初始化方法以及前向传播和反向传播的具体实现步骤。此外,文章还介绍了如何利用这些基础知识解决实际问题,并提供了丰富的实例和代码示例。 ... [详细]
  • Dell Latitude 5290 2-in-1 平板电脑黑苹果体验评测
    本文基于notebookcheck的详细数据和个人实际使用体验,对Dell Latitude 5290 2-in-1平板电脑进行评测。评测内容包括外观设计、散热性能、基准测试、游戏表现和续航能力等方面,旨在为读者提供全面的参考。 ... [详细]
  • 本文详细介绍了 PHP 中对象的生命周期、内存管理和魔术方法的使用,包括对象的自动销毁、析构函数的作用以及各种魔术方法的具体应用场景。 ... [详细]
  • MySQL的查询执行流程涉及多个关键组件,包括连接器、查询缓存、分析器和优化器。在服务层,连接器负责建立与客户端的连接,查询缓存用于存储和检索常用查询结果,以提高性能。分析器则解析SQL语句,生成语法树,而优化器负责选择最优的查询执行计划。这一流程确保了MySQL能够高效地处理各种复杂的查询请求。 ... [详细]
author-avatar
tengfei2008
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有