热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

如何将熊猫转换为PySpark数据帧?

如何将熊猫转换为PySpark数据帧?原文:https://

如何将熊猫转换为 PySpark 数据帧?

原文:https://www . geesforgeks . org/如何将熊猫转换为 pyspark-dataframe/

在本文中,我们将学习如何将熊猫转换为 PySpark 数据帧。有时我们会得到 csv、xlsx 等。格式化数据,我们必须将其存储在 PySpark 数据帧中,这可以通过将数据加载到 Pandas 中,然后转换为 PySpark 数据帧来完成。为了进行转换,我们将熊猫数据帧传递给 CreateDataFrame()方法。

语法: spark.createDataframe(数据,架构)

参数:


  • Data–Create a list of values for the data frame.

  • Schema-a list of data set structures or column names.

这里的火花就是 SparkSession 对象。

示例 1:创建一个数据帧,然后使用 spark.createDataFrame()方法进行转换

python 3

# import the pandas
import pandas as pd
# from  pyspark library import 
# SparkSession
from pyspark.sql import SparkSession
# Building the SparkSession and name
# it :'pandas to spark'
spark = SparkSession.builder.appName(
  "pandas to spark").getOrCreate()
# Create the DataFrame with the help 
# of pd.DataFrame()
data = pd.DataFrame({'State': ['Alaska', 'California',
                               'Florida', 'Washington'],
                     'city': ["Anchorage", "Los Angeles", 
                              "Miami", "Bellevue"]})
# create DataFrame
df_spark = spark.createDataFrame(data)
df_spark.show()

推荐阅读
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 本文详细探讨了几种常用的Java后端开发框架组合及其具体应用场景。通过对比分析Spring Boot、MyBatis、Hibernate等框架的特点和优势,结合实际项目需求,为开发者提供了选择合适框架组合的参考依据。同时,文章还介绍了这些框架在微服务架构中的应用,帮助读者更好地理解和运用这些技术。 ... [详细]
  • Swoole加密机制的安全性分析与破解可能性探讨
    本文深入分析了Swoole框架的加密机制,探讨了其在实际应用中的安全性,并评估了潜在的破解可能性。研究结果表明,尽管Swoole的加密算法在大多数情况下能够提供有效的安全保护,但在特定场景下仍存在被攻击的风险。文章还提出了一些改进措施,以增强系统的整体安全性。 ... [详细]
  • Web开发框架概览:Java与JavaScript技术及框架综述
    Web开发涉及服务器端和客户端的协同工作。在服务器端,Java是一种优秀的编程语言,适用于构建各种功能模块,如通过Servlet实现特定服务。客户端则主要依赖HTML进行内容展示,同时借助JavaScript增强交互性和动态效果。此外,现代Web开发还广泛使用各种框架和库,如Spring Boot、React和Vue.js,以提高开发效率和应用性能。 ... [详细]
  • 脑机接口技术在物联网行业中的应用与前景分析
    近期,国际研究人员开发了一种轻便的脑电图(EEG)采集与信号处理系统,并在物联网领域进行了初步应用研究。该系统配备了8个可扩展的采集电极和1个参考电极,具备高灵敏度的放大功能,能够有效捕捉和处理脑电信号。通过与物联网技术的结合,该系统有望在智能家居、健康监测和人机交互等领域发挥重要作用,展现出广阔的应用前景。 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 如何使用mysql_nd:Python连接MySQL数据库的优雅指南
    无论是进行机器学习、Web开发还是爬虫项目,数据库操作都是必不可少的一环。本文将详细介绍如何使用Python通过 `mysql_nd` 库与 MySQL 数据库进行高效连接和数据交互。内容涵盖以下几个方面: ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • Spring – Bean Life Cycle
    Spring – Bean Life Cycle ... [详细]
  • MySQL Decimal 类型的最大值解析及其在数据处理中的应用艺术
    在关系型数据库中,表的设计与SQL语句的编写对性能的影响至关重要,甚至可占到90%以上。本文将重点探讨MySQL中Decimal类型的最大值及其在数据处理中的应用技巧,通过实例分析和优化建议,帮助读者深入理解并掌握这一重要知识点。 ... [详细]
  • Python错误重试让多少开发者头疼?高效解决方案出炉
    ### 优化后的摘要在处理 Python 开发中的错误重试问题时,许多开发者常常感到困扰。为了应对这一挑战,`tenacity` 库提供了一种高效的解决方案。首先,通过 `pip install tenacity` 安装该库。使用时,可以通过简单的规则配置重试策略。例如,可以设置多个重试条件,使用 `|`(或)和 `&`(与)操作符组合不同的参数,从而实现灵活的错误重试机制。此外,`tenacity` 还支持自定义等待时间、重试次数和异常处理,为开发者提供了强大的工具来提高代码的健壮性和可靠性。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 本文深入解析了通过JDBC实现ActiveMQ消息持久化的机制。JDBC能够将消息可靠地存储在多种关系型数据库中,如MySQL、SQL Server、Oracle和DB2等。采用JDBC持久化方式时,数据库会自动生成三个关键表:`activemq_msgs`、`activemq_lock`和`activemq_ACKS`,分别用于存储消息数据、锁定信息和确认状态。这种机制不仅提高了消息的可靠性,还增强了系统的可扩展性和容错能力。 ... [详细]
  • Python ATM与购物车项目实战:深入解析三层架构设计
    本文详细解析了Python ATM与购物车项目的三层架构设计,重点介绍了MVC(Model-View-Controller)模式的应用。在用户界面层,系统通过图形化界面与用户进行交互,接收并处理用户的输入数据,随后将这些数据传递给控制层进行进一步处理。该层不仅负责展示信息,还承担了用户请求的初步处理任务。 ... [详细]
  • 资源管理器的基础架构包括三个核心组件:1)资源池,用于将CPU和内存等资源分配给不同的容器;2)负载组,负责承载任务并将其分配到相应的资源池;3)分类函数,用于将不同的会话映射到合适的负载组。该系统提供了两种主要的资源管理策略。 ... [详细]
author-avatar
万幼南
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有