热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

轻松了解列式存储

https:www.cnblogs.comlixinjiepfive-minutes-glance-at-hbase.html行式存储 传统的数据库是关系型的,且是按行来存储的。如

https://www.cnblogs.com/lixinjie/p/five-minutes-glance-at-hbase.html

行式存储

 

传统的数据库是关系型的,且是按行来存储的。如下图:

其中只有张三把一行数据填满了,李四王五赵六的行都没有填满。因为这里的行结构是固定的,每一行都一样,即使你不用,也必须空到那里,而不能没有。来一张形象的图:

不管你坐或不坐,座位都在那里,不离不弃。

 

列式存储

 

为了与传统的区别,新型数据库叫做非关系型数据库,是按列来存储的。如下图:

初次看列式存储稍微有点懵,下面给出行存与列存的转换:

原来张三的一列(单元格)数据对应现在张三的一行数据。原来张三的六列数据变成了现在的六行。

原来的六列数据是在一行,所以共用一个主键(即张三)。现在变成了六行,每行都需要一个主键(不然不知道这行数据是谁的),所以原来的主键(即张三)重复了六次。如下图:

由于原来的列变为了现在的行,有需要就加一行,没需要就不加,不会造成空间浪费。来一张形象的图:

(摆渡车内部就是一个大平板)

你要站便站,我给你空间,你不站便不站,还给我空间。

 

行列对比

 

① 行式存储倾向于结构固定,列式存储倾向于结构弱化。

行式存储相当于套餐,即使一个人来了也给你上八菜一汤,造成浪费;列式存储相等于自助餐,按需自取,人少了也不浪费

② 行式存储一行数据只需一份主键,列式存储一行数据需要多份主键。

③ 行式存储存的都是业务数据,列式存储除了业务数据外,还要存储列名。

④ 行式存储更像一个Java Bean,所有字段都提前定义好,且不能改变;列式存储更像一个Map,不提前定义,随意往里添加key/value。

 

官方介绍

 

Apache Hbase是Hadoop数据库,一个分布式、可扩展、大数据存储。

当你需要随机地实时读写大数据时使用Hbase。它的目标是管理超级大表-数十亿行X数百万列。

Hbase是一个开源的、分布式的、带版本的、非关系型数据库,模仿谷歌的BigTable。BigTable使用Google File System作为分布式数据存储,同理Hbase使用HDFS。

 

Hbase世界

 

Hbase虽然弱化了结构,但并不等于放任不管。传统关系型数据库在插入数据前表结构(即所有列和列的数据类型)已经是严格确定的。

Hbase的表在放入数据前也有需要确定下来的东西,那就是Column Family(常译为列族/列簇)。单词Family就是家庭的意思,所以列族就是列的家庭。那么列自然就是家庭成员了,通常家庭成员都有多个,所以一个列族包含多个列。

一个家庭的成员之间具有血缘关系,所以一个列族的多个列之间通常也具有某种关系,比如相似或同种类别。所以列族可以看作是某种分类(归类)。

一个非常常见的例子,去面试的时候,一般前台MM都会让填一张表,通常信息很多,每个公司又不尽相同。但大致可以分三类:人员基本信息,教育经历信息,工作经历信息,这三个类别其实就相当于三个列族。如下图:

 

每个类别里都会有具体的信息,比如人员基本信息里有姓名、电话、出生年月等,它们就相当于一个个标识符(变量名),在Hbase中叫做Column Qualifier(列修饰符)。列修饰符位于列族里面用来标识一条条数据。如下图:

 

在Hbase中一个列族(Column Family)和一个列修饰符(Column Qualifier)组合起来才叫一个列(Column),使用冒号(:)分割,列族:列修饰符,如下图:

 

在传统数据库中每一行的唯一标识符叫做主键,在Hbase中叫做row key(行键)。如下图:

 

数据在进入Hbase时都会被打上一个时间戳,这个时间戳可以作为版本号来使用。

在t1时间我存入一个人的基本信息,之后发现姓名错了,在t2时间又更新了姓名,此时并不会去更新原来的那条数据,而是又插入了一条新数据且打上新的时间戳。

此时去查询获取的是新数据,仿佛是更新了,但其实只是默认返回了最新版本的数据而已。如下图:

 

一个行键、列族、列修饰符、数据和时间戳组合起来叫做一个单元格(Cell)。这里的行键、列族、列修饰符和时间戳其实可以看作是定位属性(类似坐标),最终确定了一个数据。下图中的一行相等于Hbase中的一个单元格:

 

一个行键、一到多列(包括数据)组合起来叫做一行(Row)。下图中所有1001的数据合起来相当于Hbase中的一行,1002的相当于另一行:

 

在Hbase中,只要确定了列族(具体的列不用管),表(Table)就确定了。如下图:

 

官方文档中提醒把传统数据库中的表/行/列的概念用在Hbase中不是一个有帮助的类比。相反可以把Hbase的表想象成一个多(两)维Map(Map套Map)。列族是第一维,列修饰符是第二维

 

说明:任何细微的差别在大数量时都会被无限放大,那么列族和列修饰符的名字起的短一些能够节省可观的空间。


推荐阅读
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 本文详细介绍了如何安全地手动卸载Exchange Server 2003,以确保系统的稳定性和数据的完整性。根据微软官方支持文档(https://support.microsoft.com/kb833396/zh-cn),在进行卸载操作前,需要特别注意备份重要数据,并遵循一系列严格的步骤,以避免对现有网络环境造成不利影响。此外,文章还提供了详细的故障排除指南,帮助管理员在遇到问题时能够迅速解决,确保整个卸载过程顺利进行。 ... [详细]
  • 小程序的授权和登陆
    小程序的授权和登陆 ... [详细]
  • Cookie学习小结
    Cookie学习小结 ... [详细]
  • 本文详细介绍了 Spark 中的弹性分布式数据集(RDD)及其常见的操作方法,包括 union、intersection、cartesian、subtract、join、cogroup 等转换操作,以及 count、collect、reduce、take、foreach、first、saveAsTextFile 等行动操作。 ... [详细]
  • 使用ArcGIS for Java和Flex浏览自定义ArcGIS Server 9.3地图
    本文介绍了如何在Flex应用程序中实现浏览自定义ArcGIS Server 9.3发布的地图。这是一个基本的入门示例,适用于初学者。 ... [详细]
  • 用阿里云的免费 SSL 证书让网站从 HTTP 换成 HTTPS
    HTTP协议是不加密传输数据的,也就是用户跟你的网站之间传递数据有可能在途中被截获,破解传递的真实内容,所以使用不加密的HTTP的网站是不 ... [详细]
  • 在List和Set集合中存储Object类型的数据元素 ... [详细]
  • V8不仅是一款著名的八缸发动机,广泛应用于道奇Charger、宾利Continental GT和BossHoss摩托车中。自2008年以来,作为Chromium项目的一部分,V8 JavaScript引擎在性能优化和技术创新方面取得了显著进展。该引擎通过先进的编译技术和高效的垃圾回收机制,显著提升了JavaScript的执行效率,为现代Web应用提供了强大的支持。持续的优化和创新使得V8在处理复杂计算和大规模数据时表现更加出色,成为众多开发者和企业的首选。 ... [详细]
  • REST与RPC:选择哪种API架构风格?
    在探讨REST与RPC这两种API架构风格的选择时,本文首先介绍了RPC(远程过程调用)的概念。RPC允许客户端通过网络调用远程服务器上的函数或方法,从而实现分布式系统的功能调用。相比之下,REST(Representational State Transfer)则基于资源的交互模型,通过HTTP协议进行数据传输和操作。本文将详细分析两种架构风格的特点、适用场景及其优缺点,帮助开发者根据具体需求做出合适的选择。 ... [详细]
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
  • Python 实战:异步爬虫(协程技术)与分布式爬虫(多进程应用)深入解析
    本文将深入探讨 Python 异步爬虫和分布式爬虫的技术细节,重点介绍协程技术和多进程应用在爬虫开发中的实际应用。通过对比多进程和协程的工作原理,帮助读者理解两者在性能和资源利用上的差异,从而在实际项目中做出更合适的选择。文章还将结合具体案例,展示如何高效地实现异步和分布式爬虫,以提升数据抓取的效率和稳定性。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • 在前一篇文章《Hadoop》系列之“踽踽独行”(二)中,我们详细探讨了云计算的核心概念。本章将重点转向物联网技术,全面解析其基本原理、应用场景及未来发展前景。通过深入分析物联网的架构和技术栈,我们将揭示其在智能城市、工业自动化和智能家居等领域的广泛应用潜力。此外,还将讨论物联网面临的挑战,如数据安全和隐私保护等问题,并展望其在未来技术融合中的重要角色。 ... [详细]
author-avatar
大豆子
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有