热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

浅谈Java中Unicode的编码和实现

这篇文章向大家介绍了Java编程中Unicode编码及实现的相关内容,列举了几个字符不同表达式的比较,以及Unicode平面映射的知识,具有一点点参考价值,需要的朋友可以了解下。

Unicode的编码和实现

大概来说,Unicode编码系统可分为编码方式和实现方式两个层次。

编码方式

字符是抽象的最小文本单位。它没有固定的形状(可能是一个字形),而且没有值。“A”是一个字符,“€”也是一个字符。字符集是字符的集合。编码字符集是一个字符集,它为每一个字符分配一个唯一数字。

Unicode 最初设计是作为一种固定宽度的 16 位字符编码。也就是每个字符占用2个字节。这样理论上一共最多可以表示216(即65536)个字符。上述16位统一码字符构成基本多文种平面。基本多文种平面的字符的编码为U+hhhh,其中每个h代表一个十六进制数字。

很明显,16 位编码的所有 65,536 个字符并不能完全表示全世界所有正在使用或曾经使用的字符。于是,Unicode 标准已扩展到包含多达 1,112,064 个字符。那些超出原来的 16 位限制的字符被称作增补字符。Unicode 标准 2.0 版是第一个包含

启用增补字符设计的版本,但是,直到 3.1 版才收入第一批增补字符集。

Unicode字符平面映射

目前的Unicode字元分为17组编排,每组称为平面(Plane),而每平面拥有65536(即216)个代码点。然而目前只用了少数平面。

平面 始末字元值 中文名称 英文名称
0号平面 U+0000 - U+FFFF 基本多文种平面 Basic Multilingual Plane,简称BMP
1号平面 U+10000 - U+1FFFF 多文种补充平面 Supplementary Multilingual Plane,简称SMP
2号平面 U+20000 - U+2FFFF 表意文字补充平面 Supplementary Ideographic Plane,简称SIP
3号平面 U+30000 - U+3FFFF 表意文字第三平面(未正式使用) Tertiary Ideographic Plane,简称TIP
4号平面

13号平面
U+40000 - U+DFFFF (尚未使用)  
14号平面 U+E0000 - U+EFFFF 特别用途补充平面 Supplementary Special-purpose Plane,简称SSP
15号平面 U+F0000 - U+FFFFF 保留作为私人使用区(A区)
Private Use Area-A,简称PUA-A
16号平面 U+100000 - U+10FFFF 保留作为私人使用区(B区)
Private Use Area-B,简称PUA-B

增补字符是代码点在 U+10000 至 U+10FFFF 范围之间的字符(上述表格中1号平面~16号平面之间的),也就是那些使用原始的 Unicode 的 16 位设计无法表示的字符。从 U+0000 至 U+FFFF 之间的字符集有时候被称为基本多语言面 (BMP)。因此,每一个 Unicode 字符要么属于 BMP,要么属于增补字符。

实现方式

UTF-32、UTF-16 和 UTF-8 是具体的实现方案。Unicode的实现方式不同于编码方式。一个字符的Unicode编码是确定的。但是在实际传输过程中,由于不同系统平台的设计不一定一致,以及出于节省空间的目的,对Unicode编码的实现方式有所不同。Unicode的实现方式称为Unicode转换格式(Unicode Transformation Format,简称为UTF)。

例如,如果一个仅包含基本7位ASCII字符的Unicode文件,如果每个字符都使用2字节的原Unicode编码传输,其第一字节的8位始终为0。这就造成了比较大的浪费。对于这种情况,可以使用UTF-8编码,这是一种变长编码,它将基本7位ASCII字符仍用7位编码表示,占用一个字节(首位补0)。而遇到与其他Unicode字符混合的情况,将按一定算法转换,每个字符使用1-3个字节编码,并利用首位为0或1进行识别。这样对以7位ASCII字符为主的西文文档就大幅节省了编码长度(具体方案参见UTF-8)。类似的,对未来会出现的需要4个字节的辅助平面字符和其他UCS-4扩充字符,2字节编码的UTF-16也需要通过一定的算法进行转换。

再如,如果直接使用与Unicode编码一致(仅限于BMP字符)的UTF-16编码,由于每个字符占用了两个字节,在麦金塔电脑(Mac)机和个人电脑上,对字节顺序的理解是不一致的。这时同一字节流可能会被解释为不同内容,如某字符为十六进制编码4E59,按两个字节拆分为4E和59,在Mac上读取时是从低字节开始,那么在Mac OS会认为此4E59编码为594E,找到的字符为“奎”,而在Windows上从高字节开始读取,则编码为U+4E59的字符为“乙”。就是说在Windows下以UTF-16编码保存一个字符“乙”,在Mac OS环境下打开会显示成“奎”。此类情况说明UTF-16的编码顺序若不加以人为定义就可能发生混淆,于是在UTF-16编码实现方式中使用了大端序(Big-Endian,简写为UTF-16 BE)、小端序(Little-Endian,简写为UTF-16 LE)的概念,以及可附加的字节顺序记号解决方案,目前在PC机上的Windows系统和Linux系统对于UTF-16编码默认使用UTF-16 LE。(具体方案参见UTF-16)

此外Unicode的实现方式还包括UTF-7、Punycode、CESU-8、SCSU、UTF-32、GB18030等,这些实现方式有些仅在一定的国家和地区使用,有些则属于未来的规划方式。目前通用的实现方式是UTF-16小端序(LE)、UTF-16大端序(BE)和UTF-8。在微软公司Windows XP附带的记事本(Notepad)中,“另存为”对话框可以选择的四种编码方式除去非Unicode编码的ANSI(对于英文系统即ASCII编码,中文系统则为GB2312或Big5编码)外,其余三种为“Unicode”(对应UTF-16 LE)、“Unicode big endian”(对应UTF-16 BE)和“UTF-8”。

代码点、码位

在字符编码术语中,码位或称编码位置,即英文的code point或code position,是组成码空间(或代码页)的数值。 例如,ASCII码包含128个码位,范围是016进制到7F16进制,扩展ASCII码包含256个码位,范围是016进制到FF16进制,而Unicode包含1,114,112个码位,范围是016进制到10FFFF16进制。Unicode码空间划分为17个Unicode字符平面(基本多文种平面,16个辅助平面),每个平面有65,536(= 216)个码位。因此Unicode码空间总计是17 × 65,536 = 1,114,112.

代码单元、码元

码元(Code Unit,也称“代码单元”)是指一个已编码的文本中具有最短的比特组合的单元。对于UTF-8来说,码元是8比特长;对于UTF-16来说,码元是16比特长;对于UTF-32来说,码元是32比特长。码值(Code Value)是过时的用法。
明白了上述两个概念,我们就可以认为UTF-N(N为8,16,32)干的事就是把Unicode字符集的抽象码位映射为N位长的整数(即码元)的序列,用于数据存储或传递。

UTF-32 即将每一个 Unicode 代码点表示为相同值的 32 位整数。很明显,它是内部处理最方便的表达方式,但是,如果作为一般字符串表达方式,则要消耗更多的内存。

UTF-16 使用一个或两个未分配的 16 位代码单元的序列对 Unicode 代码点进行编码。值 U+0000 至 U+FFFF 编码为一个相同值的 16 位单元。增补字符编码为两个代码单元,第一个单元来自于高代理范围(U+D800 至 U+DBFF),第二个单元来自于低代理范围(U+DC00 至 U+DFFF)。这在概念上可能看起来类似于多字节编码,但是其中有一个重要区别:值 U+D800 至 U+DFFF 保留用于 UTF-16;没有这些值分配字符作为代码点。这意味着,对于一个字符串中的每个单独的代码单元,软件可以识别是否该代码单元表示某个单单元字符,或者是否该代码单元是某个双单元字符的第一个或第二单元。这相当于某些传统的多字节字符编码来说是一个显著的改进,在传统的多字节字符编码中,字节值 0x41 既可能表示字母“A”,也可能是一个双字节字符的第二个字节。

UTF-8 使用一至四个字节的序列对编码 Unicode 代码点进行编码。U+0000 至 U+007F 使用一个字节编码,U+0080 至 U+07FF 使用两个字节,U+0800 至 U+FFFF 使用三个字节,而 U+10000 至 U+10FFFF 使用四个字节。UTF-8 设计原理为:字节值 0x00 至 0x7F 始终表示代码点 U+0000 至 U+007F(Basic Latin 字符子集,它对应 ASCII 字符集)。这些字节值永远不会表示其他代码点,这一特性使 UTF-8 可以很方便地在软件中将特殊的含义赋予某些 ASCII 字符。

下表所示为几个字符不同表达方式的比较:

Unicode 代码点 U+0041 U+00DF U+6771 U+10400
表示字形
UTF-32 代码单元
00000041
000000DF
00006771
00010400
UTF-16 代码单元
0041
00DF
6771
D801 DC00
UTF-8 代码单元
41
C3 9F
E6 9D B1
F0 90 90 80

注:上述编码中的数字均是十六进制表示的。

总结

以上就是本文关于浅谈Java中Unicode的编码和实现的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:Java编程将汉字转Unicode码代码示例、Java源码解析之object类等,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!


推荐阅读
  • 本文回顾了作者在求职阿里和腾讯实习生过程中,从最初的迷茫到最后成功获得Offer的心路历程。文中不仅分享了个人的面试经历,还提供了宝贵的面试准备建议和技巧。 ... [详细]
  • 春季职场跃迁指南:如何高效利用金三银四跳槽季
    随着每年的‘金三银四’跳槽高峰期的到来,许多职场人士都开始考虑是否应该寻找新的职业机会。本文将探讨如何制定有效的职业规划、撰写吸引人的简历以及掌握面试技巧,助您在这关键时期成功实现职场跃迁。 ... [详细]
  • 随着Linux操作系统的广泛使用,确保用户账户及系统安全变得尤为重要。用户密码的复杂性直接关系到系统的整体安全性。本文将详细介绍如何在CentOS服务器上自定义密码规则,以增强系统的安全性。 ... [详细]
  • 吴石访谈:腾讯安全科恩实验室如何引领物联网安全研究
    腾讯安全科恩实验室曾两次成功破解特斯拉自动驾驶系统,并远程控制汽车,展示了其在汽车安全领域的强大实力。近日,该实验室负责人吴石接受了InfoQ的专访,详细介绍了团队未来的重点方向——物联网安全。 ... [详细]
  • Ubuntu系统下的GIF动画录制解决方案
    在撰写文章或教程时,GIF动态图能够有效地传达信息。对于Windows用户而言,ScreenToGif是一款非常实用的工具。而在Ubuntu系统中,用户同样拥有多种选择来创建GIF动画,本文将重点介绍两款录屏工具——Byzanz和Peek。 ... [详细]
  • 网络流24题——试题库问题
    题目描述:假设一个试题库中有n道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取m道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算 ... [详细]
  • 一文详解Linux
    Linuxnetfilter与VRF实验环境如下图所示:配置如下:#!binbashsudoipnetnsaddns1sudoiplinkaddns1veth1typevethpe ... [详细]
  • 本文详细介绍了如何在 Ubuntu 14.04 系统上搭建仅使用 CPU 的 Caffe 深度学习框架,包括环境准备、依赖安装及编译过程。 ... [详细]
  • 如何在Win10系统下通过VMware 14 Pro安装CentOS 7
    本文详细介绍了在Windows 10操作系统中使用VMware Workstation 14 Pro搭建CentOS 7虚拟环境的步骤,包括所需工具、安装过程及系统配置等。 ... [详细]
  • 如何安装FARO Scene 2018?详尽的永久授权指南
    FARO Scene 2018 是一款专为专业用户设计的3D点云处理与管理软件。该软件支持从高精度3D激光扫描设备获取的大规模3D扫描数据的查看、管理和处理。本文将详细介绍如何安装及激活FARO Scene 2018的永久许可。 ... [详细]
  • 为何Compose与Swarm之后仍有Kubernetes的诞生?
    探讨在已有Compose和Swarm的情况下,Kubernetes是如何以其独特的设计理念和技术优势脱颖而出,成为容器编排领域的领航者。 ... [详细]
  • 本文介绍了如何通过安装 sqlacodegen 和 pymysql 来根据现有的 MySQL 数据库自动生成 ORM 的模型文件(model.py)。此方法适用于需要快速搭建项目模型层的情况。 ... [详细]
  • 如何在Windows 7 64位系统中成功注册DLL文件
    本文详细介绍了在Windows 7 64位系统中注册DLL文件的具体步骤,包括使用管理员权限运行命令提示符以及正确的路径导航方法,确保注册过程顺利进行。 ... [详细]
  • 本文探讨了程序员这一职业的本质,认为他们是专注于问题解决的专业人士。文章深入分析了他们的日常工作状态、个人品质以及面对挑战时的态度,强调了编程不仅是一项技术活动,更是个人成长和精神修炼的过程。 ... [详细]
  • 在1995年,Simon Plouffe 发现了一种特殊的求和方法来表示某些常数。两年后,Bailey 和 Borwein 在他们的论文中发表了这一发现,这种方法被命名为 Bailey-Borwein-Plouffe (BBP) 公式。该问题要求计算圆周率 π 的第 n 个十六进制数字。 ... [详细]
author-avatar
mobiledu2502918317
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有