热门标签 | HotTags
当前位置:  开发笔记 > 程序员 > 正文

鲁卡斯数列表

意大利的数学家列奥纳多·斐波那契发现的斐波纳契数列也就是我们说的费氏数列.鲁卡斯数列又是怎么来的呢?除了斐波纳契数列以外,我们进行金融分析还要了解鲁卡斯数列.19世纪时法国一个数学家

     意大利的数学家列奥纳多·斐波那契发现的斐波纳契数列也就是我们说的费氏数列.鲁卡斯数列又是怎么来的呢?
    除了斐波纳契数列以外,我们进行金融分析还要了解鲁卡斯数列.
19世纪时法国一个数学家鲁卡斯(E.Lucas)在研究数论的素数分布问题时发现和斐波那契数有些关系,而他又发现一种新的数列:1,3,4,7,11,18,29,47,76,123,199,322,521等等。这数列和斐波那契数列有相同的性质,第二项以后的项是前面二项的和组成。数学家们称这数列为鲁卡斯数列。斐波纳契数列与解鲁卡斯数列都与黄金分割比有密切的关系.
    鲁卡斯数列与费波纳茨数列的关系
  费波纳茨数列Fn:0、1、1、2、3、5、8、13、21、34、55、89、144、233……….
    鲁卡斯数列…Ln:1、3、4、7、11、18、29、47、76、123、199、322……..
    鲁卡斯数列的构成为相邻两费波纳茨数之和的集合,即Ln=Fn-1+Fn+1。
    1876年鲁卡斯在研究一元二次方程POW(X,2)-X-1=0的两个根X1=(1+SQRT(5))/2,X2=(1-SQRT(5))/2时{1/X=X/(1-X)}得出了两个重要的推论结果:
     Fn=(1/SQRT(5))*POW((1+SQRT(5))/2,n)-(1/SQRT(5))*POW((1-SQRT(5))/2,n)
     Ln=POW((1+SQRT(5))/2,n)+POW((1-SQRT(5))/2,n)
    方程1/X=X/(1-X)的正根,为无理数∮=(1+SQRT(5))/2≈1.618,即著名的黄金分割比。
  由黄金分割比按0.38(∮平方分之一)的乘率递减求出的正方形,所作圆弧的连线,即黄金螺旋线。
  螺旋线是宇宙构成的基本形态,也是股市起伏时间序的基本形态,而其本质的参数即是黄金分割比∮。
  比较费波纳茨数列与鲁卡斯数列,对相邻两数的比值取n趋向无穷大的极限,比值趋向黄金分割比∮
     Fn+1/Fn------->?∮
  Ln+1/Ln------->?∮
  因此,结论是两数列的本质是一致的,都与黄金分割比有着密切的关系。
    嘉路兰螺旋历法的缺陷与鲁卡斯数列预测系统的产生
  研究过嘉路兰螺旋历法的人知道,螺旋历法建立在嘉路兰的两点结论之上:
  1、 市场是人类买卖的场所,投资者的情绪与心理往往受到天体运行周期的影响,其中月球的影响最大;
  2、 当月球周期(即E=29.5306)的倍数是费波纳茨数的开方时,市场投资情绪可能出现逆转,而市场变盘。
  
    
( 怎么将鲁卡斯数用于股市?我们向嘉路兰学习。遵循他的思路或许有所收获。 
    嘉路兰于87股灾后发现了著名的螺旋历法。他的灵感可能来源于波浪理论,艾略特将形态与费氏比率∮结合。嘉路兰于是想到了将∮用于时间。 
    他遇到第一个问题——费氏数在第11项后变化越来越大,由于相邻两数差值太大,使许多关键点被忽略。嘉路兰用平方根把变化速度减缓。 
    他遇到第二个问题——费氏方根变化又太小了。前10项几乎粘在一起,用于测算意义不大。嘉路兰想到在平方根前乘一个常数。 
    他遇到第三个问题——用哪个数值作这个常数。在大量的比较、计算、总结后。嘉路兰幸运的发现了太阴月周期与股市的关系。这只能解释为幸运之神的眷顾,他成功了。 
    这个神奇的公式Bn=E√Fn。即周期日数是月球从圆到缺一循环时与费氏方根的乘积。E是太阴月周期29.5306天。用这么多笔墨解释嘉路兰的思维,是为将鲁卡斯数依样画葫芦,仿制另一个螺旋历法——鲁卡斯螺旋历。 
    我们先将鲁卡斯数开方,再找那个常数。既然嘉路兰用太阴月周期,我们就可以用太阳月周期。 
    遇到第一个问题——太阳月周期为30.4375,该数与鲁氏方根的乘积还是太大。不妨将太阳月周期一分两段,用其一,即15.21875)。 
    由于嘉路兰的螺旋历法采用的是阴历的朔望月周期,变化速度慢,时间跨度大。因此,所预测的变盘点尽管包含在诸变盘点的集合内,但还是有许多变盘点被遗漏。根据嘉路兰螺旋历法的缺陷,国人王居恭先生提出并论证了,用鲁卡斯数列预测股市变盘点的方法。即用阳历太阳月周期的一半(二十四节气“节”到“中”的距离)15.21875日,与鲁卡斯数的开方之积。(亦即:当太阳月周期的一半的倍数是鲁卡斯数的开方时,市场可能出现变盘。)
  Hn=SQRT(Ln)*15.21875
  鲁卡斯数列预测变盘点系统的优点:
  1、 方法较之嘉路兰的螺旋历法简单;
  2、 网罗的变盘点即所有的变盘点。
  缺点:不能单独确认变盘点的正确性,须与螺旋历法系统进行交叉验证。
  上述两系统比较结果,可能存在的情况:两预测系统的螺旋线上,所预测的点相交;或不相交。有交点则此交点即可能是实际值;无交点,则取一系统的均值,与另一系统相比较,而选择其中之一。
    时间窗
  1、 螺旋历法系统的时间窗
  嘉路兰螺旋历法的变盘时间窗为,某变盘日起,此日之后的5、8、13、21、34、55、89、144、233……日,也可能发生变盘,计算日为起点日向后推算。
  2、 鲁卡斯自然律时间窗
  鲁卡斯数决定的时间窗是固定日期,相似于阴历初一、十五、二十四节气之日,可能变盘。
    经计算的Hn时间窗的积日为:
  (5)(12)(17)(21)(73)(81)(110)(120)(145)(162)(184)(188)(203)(213)(255)(277)(292)(295)(316)(342)(353)
  如果将积日换算成2001的日期,上述积日为
  2001/1/5、2001/1/17、2001/1/21、2001/3/14、2001/3/22、2001/4/20、2001/4/30、2001/5/25、2001/6/11、2001/7/3、2001/7/7、2001/7/22、2001/8/1、2001/9/12、2001/10/4、2001/10/19、2001/10/22、2001/11/12、2001/12/7、2001/12/19。
  将上述日期与已经发生过的走势对照,我们可以发现,2001年许多重要的转折点出现在上述的日期集合里(螺旋历法转折点定义为当日收盘价):
  2001/1/5的2125.30点、2001/1/21的1909.33点、2001/4/20(实际数差三天,2001/4/17的2176.68点)、2001/6/11(实际数差两天、2001/6/13的2242.42点)、2001/10/22的1520.67点、2001/12/7(实际数差三天、2001/12/4的1769.68点)
  通过上述论述,我们得出三点结论:
  1、 螺旋历法的时间窗作用,经市场长期论证已经得到证实.
    2、 鲁卡斯自然律时间窗网罗的变盘点,涵盖了所有重要的变盘点。
  3、 与螺旋历法一样,鲁卡斯预测法测算的变盘点亦会产生漂移。
  因此,在使用两系统预测变盘点时,两者必须兼顾并相互论证筛选。计算所得出的日期的前后三天,应该列为重点观察的日期,提前作好心理准备总是好的。
    值得关注的点:
“嘉路兰螺旋历法的变盘时间窗为,某变盘日起,此日之后的5、8、13、21、34、55、89、144、233……日,也可能发生变盘,计算日为起点日向后推算。”
    起点加后续费波纳茨数产生的日期,可能产生变盘点;
    起点加后续费波纳茨数产生的日期与鲁卡斯自然律相近的日期,可能产生变盘点;
    起点加后续费波纳茨数交集日期(及鲁卡斯自然律),其共同的作用力,可能产生大级别的变盘点。
    鲁卡斯自然律Hn的数列(15、26、30、40、50、65、82……..),填补了按费波纳茨数增加的变盘日(交易日),没有覆盖的时间段;
   鲁卡斯数为“二十四节气”变盘点的假设,提供了理论依据。鲁卡斯自然律论证了,“二十四节气”附近产生变盘点的可能性;
   两预测系统测算的变盘点时间与实际时间有时会略有偏差,预测出的变盘点时间值得关注,但还需以实际盘面状况加以判别取舍;
   由于鲁卡斯自然律是固定的时间窗,这为直接在分析软件上产生变盘参考点提供了方便;
   螺旋历法时间窗,实际上可通过求解不同变盘点的矩阵方程解决次交集点.
    金融市场的时间和价格均服从斐波纳契数列和鲁卡斯数列,有时的准确率达到十分惊人的地步。斐波纳契数列和鲁卡斯数列在金融市场中几乎无处不在。有了费氏数列、鲁氏数列两组“神奇数列”的相互验证,使一些分析可以去“孤”从“众”,预测的成功率提高,误差点将大幅减少。


推荐阅读
  • 本文介绍了Spring 2.0引入的TaskExecutor接口及其多种实现,包括同步和异步执行任务的方式。文章详细解释了如何在Spring应用中配置和使用这些线程池实现,以提高应用的性能和可管理性。 ... [详细]
  • 原子操作是指在执行过程中不会被中断的操作。本文将探讨Java是如何通过不同的技术手段实现原子操作的,包括CPU层面的总线加锁和缓存行加锁,以及Java层面的锁机制和CAS操作。 ... [详细]
  • 在HTML布局中,即使将 `top: 0%` 和 `left: 0%` 设置为元素的定位属性,浏览器中仍然会出现空白填充。这个问题通常与默认的浏览器样式、盒模型或父元素的定位方式有关。为了消除这些空白,可以考虑重置浏览器的默认样式,确保父元素的定位方式正确,并检查是否有其他CSS规则影响了元素的位置。 ... [详细]
  • LocaStorage 能否成为 Vuex 的有效替代方案? ... [详细]
  • 在分析和解决 Keepalived VIP 漂移故障的过程中,我们发现主备节点配置如下:主节点 IP 为 172.16.30.31,备份节点 IP 为 172.16.30.32,虚拟 IP 为 172.16.30.10。故障表现为监控系统显示 Keepalived 主节点状态异常,导致 VIP 漂移到备份节点。通过详细检查配置文件和日志,我们发现主节点上的 Keepalived 进程未能正常运行,最终通过优化配置和重启服务解决了该问题。此外,我们还增加了健康检查机制,以提高系统的稳定性和可靠性。 ... [详细]
  • 深入解析CAS机制:全面替代传统锁的底层原理与应用
    本文深入探讨了CAS(Compare-and-Swap)机制,分析了其作为传统锁的替代方案在并发控制中的优势与原理。CAS通过原子操作确保数据的一致性,避免了传统锁带来的性能瓶颈和死锁问题。文章详细解析了CAS的工作机制,并结合实际应用场景,展示了其在高并发环境下的高效性和可靠性。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • 在Linux系统中,网络配置是至关重要的任务之一。本文详细解析了Firewalld和Netfilter机制,并探讨了iptables的应用。通过使用`ip addr show`命令来查看网卡IP地址(需要安装`iproute`包),当网卡未分配IP地址或处于关闭状态时,可以通过`ip link set`命令进行配置和激活。此外,文章还介绍了如何利用Firewalld和iptables实现网络流量控制和安全策略管理,为系统管理员提供了实用的操作指南。 ... [详细]
  • POJ 2482 星空中的星星:利用线段树与扫描线算法解决
    在《POJ 2482 星空中的星星》问题中,通过运用线段树和扫描线算法,可以高效地解决星星在窗口内的计数问题。该方法不仅能够快速处理大规模数据,还能确保时间复杂度的最优性,适用于各种复杂的星空模拟场景。 ... [详细]
  • 经过两天的努力,终于成功解决了半平面交模板题POJ3335的问题。原来是在`OnLeft`函数中漏掉了关键的等于号。通过这次训练,不仅加深了对半平面交算法的理解,还提升了调试和代码实现的能力。未来将继续深入研究计算几何的其他核心问题,进一步巩固和拓展相关知识。 ... [详细]
  • 解决相对定位元素与 div 元素之间的重叠及遮挡问题
    在处理相对定位元素与 `div` 元素之间的重叠及遮挡问题时,首先需要深入理解 CSS 中不同 `position` 属性的用法及其含义。通过合理设置 `z-index`、`position` 和其他相关属性,可以有效避免元素间的相互干扰,确保页面布局的美观和功能性。建议开发者在实际应用中多加实践,掌握这些属性的综合运用技巧。 ... [详细]
  • 在Django中提交表单时遇到值错误问题如何解决?
    在Django项目中,当用户提交包含多个选择目标的表单时,可能会遇到值错误问题。本文将探讨如何通过优化表单处理逻辑和验证机制来有效解决这一问题,确保表单数据的准确性和完整性。 ... [详细]
  • 在Android开发中,BroadcastReceiver(广播接收器)是一个重要的组件,广泛应用于多种场景。本文将深入解析BroadcastReceiver的工作原理、应用场景及其具体实现方法,帮助开发者更好地理解和使用这一组件。通过实例分析,文章详细探讨了静态广播的注册方式、生命周期管理以及常见问题的解决策略,为开发者提供全面的技术指导。 ... [详细]
  • C++ 开发实战:实用技巧与经验分享
    C++ 开发实战:实用技巧与经验分享 ... [详细]
  • 单链表的高效遍历及性能优化策略
    本文探讨了单链表的高效遍历方法及其性能优化策略。在单链表的数据结构中,插入操作的时间复杂度为O(n),而遍历操作的时间复杂度为O(n^2)。通过在 `LinkList.h` 和 `main.cpp` 文件中对单链表进行封装,我们实现了创建和销毁功能的优化,提高了单链表的使用效率。此外,文章还介绍了几种常见的优化技术,如缓存节点指针和批量处理,以进一步提升遍历性能。 ... [详细]
author-avatar
大大文人
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有