热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

今天小编就为大家分享一篇Pytorch使用MNIST数据集实现基础GAN和DCGAN详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

原始生成对抗网络Generative Adversarial Networks GAN包含生成器Generator和判别器Discriminator,数据有真实数据groundtruth,还有需要网络生成的“fake”数据,目的是网络生成的fake数据可以“骗过”判别器,让判别器认不出来,就是让判别器分不清进入的数据是真实数据还是fake数据。总的来说是:判别器区分真实数据和fake数据的能力越强越好;生成器生成的数据骗过判别器的能力越强越好,这个是矛盾的,所以只能交替训练网络。

需要搭建生成器网络和判别器网络,训练的时候交替训练。

首先训练判别器的参数,固定生成器的参数,让判别器判断生成器生成的数据,让其和0接近,让判别器判断真实数据,让其和1接近;

接着训练生成器的参数,固定判别器的参数,让生成器生成的数据进入判别器,让判断结果和1接近。生成器生成数据需要给定随机初始值

线性版:

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from torch import optim
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.gridspec as gridspec
 
def showimg(images,count):
 images=images.detach().numpy()[0:16,:]
 images=255*(0.5*images+0.5)
 images = images.astype(np.uint8)
 grid_length=int(np.ceil(np.sqrt(images.shape[0])))
 plt.figure(figsize=(4,4))
 width = int(np.sqrt((images.shape[1])))
 gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0)
 # gs.update(wspace=0, hspace=0)
 print('starting...')
 for i, img in enumerate(images):
 ax = plt.subplot(gs[i])
 ax.set_xticklabels([])
 ax.set_yticklabels([])
 ax.set_aspect('equal')
 plt.imshow(img.reshape([width,width]),cmap = plt.cm.gray)
 plt.axis('off')
 plt.tight_layout()
 print('showing...')
 plt.tight_layout()
 plt.savefig('./GAN_Image/%d.png'%count, bbox_inches='tight')
 
def loadMNIST(batch_size): #MNIST图片的大小是28*28
 trans_img=transforms.Compose([transforms.ToTensor()])
 trainset=MNIST('./data',train=True,transform=trans_img,download=True)
 testset=MNIST('./data',train=False,transform=trans_img,download=True)
 # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10)
 testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10)
 return trainset,testset,trainloader,testloader
 
class discriminator(nn.Module):
 def __init__(self):
 super(discriminator,self).__init__()
 self.dis=nn.Sequential(
  nn.Linear(784,300),
  nn.LeakyReLU(0.2),
  nn.Linear(300,150),
  nn.LeakyReLU(0.2),
  nn.Linear(150,1),
  nn.Sigmoid()
 )
 def forward(self, x):
 x=self.dis(x)
 return x
 
class generator(nn.Module):
 def __init__(self,input_size):
 super(generator,self).__init__()
 self.gen=nn.Sequential(
  nn.Linear(input_size,150),
  nn.ReLU(True),
  nn.Linear(150,300),
  nn.ReLU(True),
  nn.Linear(300,784),
  nn.Tanh()
 )
 def forward(self, x):
 x=self.gen(x)
 return x
 
if __name__=="__main__":
 criterion=nn.BCELoss()
 num_img=100
 z_dimension=100
 D=discriminator()
 G=generator(z_dimension)
 trainset, testset, trainloader, testloader = loadMNIST(num_img) # data
 d_optimizer=optim.Adam(D.parameters(),lr=0.0003)
 g_optimizer=optim.Adam(G.parameters(),lr=0.0003)
 '''
 交替训练的方式训练网络
 先训练判别器网络D再训练生成器网络G
 不同网络的训练次数是超参数
 也可以两个网络训练相同的次数
 这样就可以不用分别训练两个网络
 '''
 count=0
 #鉴别器D的训练,固定G的参数
 epoch = 100
 gepoch = 1
 for i in range(epoch):
 for (img, label) in trainloader:
  # num_img=img.size()[0]
  real_img=img.view(num_img,-1)#展开为28*28=784
  real_label=torch.ones(num_img)#真实label为1
  fake_label=torch.zeros(num_img)#假的label为0
 
  #compute loss of real_img
  real_out=D(real_img) #真实图片送入判别器D输出0~1
  d_loss_real=criterion(real_out,real_label)#得到loss
  real_scores=real_out#真实图片放入判别器输出越接近1越好
 
  #compute loss of fake_img
  z=torch.randn(num_img,z_dimension)#随机生成向量
  fake_img=G(z)#将向量放入生成网络G生成一张图片
  fake_out=D(fake_img)#判别器判断假的图片
  d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss
  fake_scores=fake_out#假的图片放入判别器输出越接近0越好
 
  #D bp and optimize
  d_loss=d_loss_real+d_loss_fake
  d_optimizer.zero_grad() #判别器D的梯度归零
  d_loss.backward() #反向传播
  d_optimizer.step() #更新判别器D参数
 
  #生成器G的训练compute loss of fake_img
  for j in range(gepoch):
  fake_label = torch.ones(num_img) # 真实label为1
  z = torch.randn(num_img, z_dimension) # 随机生成向量
  fake_img = G(z) # 将向量放入生成网络G生成一张图片
  output = D(fake_img) # 经过判别器得到结果
  g_loss = criterion(output, fake_label)#得到假的图片与真实标签的loss
  #bp and optimize
  g_optimizer.zero_grad() #生成器G的梯度归零
  g_loss.backward() #反向传播
  g_optimizer.step()#更新生成器G参数
 print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} '
   'D real: {:.6f}, D fake: {:.6f}'.format(
  i, epoch, d_loss.data[0], g_loss.data[0],
  real_scores.data.mean(), fake_scores.data.mean()))
 showimg(fake_img,count)
 # plt.show()
 count += 1

这里的图分别是 epoch为0、50、100、150、190的运行结果,可以看到图片中的数字并不单一

卷积版 Deep Convolutional Generative Adversarial Networks:

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from torch import optim
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
from torch.autograd import Variable
 
import matplotlib.gridspec as gridspec
import os
 
def showimg(images,count):
 images=images.to('cpu')
 images=images.detach().numpy()
 images=images[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]]
 images=255*(0.5*images+0.5)
 images = images.astype(np.uint8)
 grid_length=int(np.ceil(np.sqrt(images.shape[0])))
 plt.figure(figsize=(4,4))
 width = images.shape[2]
 gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0)
 print(images.shape)
 for i, img in enumerate(images):
 ax = plt.subplot(gs[i])
 ax.set_xticklabels([])
 ax.set_yticklabels([])
 ax.set_aspect('equal')
 plt.imshow(img.reshape(width,width),cmap = plt.cm.gray)
 plt.axis('off')
 plt.tight_layout()
# print('showing...')
 plt.tight_layout()
# plt.savefig('./GAN_Imaget/%d.png'%count, bbox_inches='tight')
 
def loadMNIST(batch_size): #MNIST图片的大小是28*28
 trans_img=transforms.Compose([transforms.ToTensor()])
 trainset=MNIST('./data',train=True,transform=trans_img,download=True)
 testset=MNIST('./data',train=False,transform=trans_img,download=True)
 # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10)
 testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10)
 return trainset,testset,trainloader,testloader
 
class discriminator(nn.Module):
 def __init__(self):
 super(discriminator,self).__init__()
 self.dis=nn.Sequential(
  nn.Conv2d(1,32,5,stride=1,padding=2),
  nn.LeakyReLU(0.2,True),
  nn.MaxPool2d((2,2)),
 
  nn.Conv2d(32,64,5,stride=1,padding=2),
  nn.LeakyReLU(0.2,True),
  nn.MaxPool2d((2,2))
 )
 self.fc=nn.Sequential(
  nn.Linear(7 * 7 * 64, 1024),
  nn.LeakyReLU(0.2, True),
  nn.Linear(1024, 1),
  nn.Sigmoid()
 )
 def forward(self, x):
 x=self.dis(x)
 x=x.view(x.size(0),-1)
 x=self.fc(x)
 return x
 
class generator(nn.Module):
 def __init__(self,input_size,num_feature):
 super(generator,self).__init__()
 self.fc=nn.Linear(input_size,num_feature) #1*56*56
 self.br=nn.Sequential(
  nn.BatchNorm2d(1),
  nn.ReLU(True)
 )
 self.gen=nn.Sequential(
  nn.Conv2d(1,50,3,stride=1,padding=1),
  nn.BatchNorm2d(50),
  nn.ReLU(True),
 
  nn.Conv2d(50,25,3,stride=1,padding=1),
  nn.BatchNorm2d(25),
  nn.ReLU(True),
 
  nn.Conv2d(25,1,2,stride=2),
  nn.Tanh()
 )
 def forward(self, x):
 x=self.fc(x)
 x=x.view(x.size(0),1,56,56)
 x=self.br(x)
 x=self.gen(x)
 return x
 
if __name__=="__main__":
 criterion=nn.BCELoss()
 num_img=100
 z_dimension=100
 D=discriminator()
 G=generator(z_dimension,3136) #1*56*56
 trainset, testset, trainloader, testloader = loadMNIST(num_img) # data
 D=D.cuda()
 G=G.cuda()
 d_optimizer=optim.Adam(D.parameters(),lr=0.0003)
 g_optimizer=optim.Adam(G.parameters(),lr=0.0003)
 '''
 交替训练的方式训练网络
 先训练判别器网络D再训练生成器网络G
 不同网络的训练次数是超参数
 也可以两个网络训练相同的次数,
 这样就可以不用分别训练两个网络
 '''
 count=0
 #鉴别器D的训练,固定G的参数
 epoch = 100
 gepoch = 1
 for i in range(epoch):
 for (img, label) in trainloader:
  # num_img=img.size()[0]
  img=Variable(img).cuda()
  real_label=Variable(torch.ones(num_img)).cuda()#真实label为1
  fake_label=Variable(torch.zeros(num_img)).cuda()#假的label为0
 
  #compute loss of real_img
  real_out=D(img) #真实图片送入判别器D输出0~1
  d_loss_real=criterion(real_out,real_label)#得到loss
  real_scores=real_out#真实图片放入判别器输出越接近1越好
 
  #compute loss of fake_img
  z=Variable(torch.randn(num_img,z_dimension)).cuda()#随机生成向量
  fake_img=G(z)#将向量放入生成网络G生成一张图片
  fake_out=D(fake_img)#判别器判断假的图片
  d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss
  fake_scores=fake_out#假的图片放入判别器输出越接近0越好
 
  #D bp and optimize
  d_loss=d_loss_real+d_loss_fake
  d_optimizer.zero_grad() #判别器D的梯度归零
  d_loss.backward() #反向传播
  d_optimizer.step() #更新判别器D参数
 
  #生成器G的训练compute loss of fake_img
  for j in range(gepoch):
  fake_label = Variable(torch.ones(num_img)).cuda() # 真实label为1
  z = Variable(torch.randn(num_img, z_dimension)).cuda() # 随机生成向量
  fake_img = G(z) # 将向量放入生成网络G生成一张图片
  output = D(fake_img) # 经过判别器得到结果
  g_loss = criterion(output, fake_label)#得到假的图片与真实标签的loss
  #bp and optimize
  g_optimizer.zero_grad() #生成器G的梯度归零
  g_loss.backward() #反向传播
  g_optimizer.step()#更新生成器G参数
  # if ((i+1)%1000==0):
  # print("[%d/%d] GLoss: %.5f" % (i + 1, gepoch, g_loss.data[0]))
 print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} '
   'D real: {:.6f}, D fake: {:.6f}'.format(
  i, epoch, d_loss.data[0], g_loss.data[0],
  real_scores.data.mean(), fake_scores.data.mean()))
 showimg(fake_img,count)
 plt.show()
 count += 1

这里的gepoch设置为1,运行39次的结果是:

gepoch设置为2,运行0、25、50、75、100次的结果是:

gepoch设置为3,运行25、50、75次的结果是:

gepoch设置为4,运行0、10、20、30、35次的结果是:

gepoch设置为5,运行0、10、20、25、29次的结果是:

gepoch设置为3,z_dimension设置为190,epoch运行0、10、15、20、25、35的结果是:

可以看到生成的数字基本没有太多的规律,可能最终都是同个数字,不能生成指定的数字,CGAN就很好的解决这个问题,可以生成指定的数字 Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

以上这篇Pytorch使用MNIST数据集实现基础GAN和DCGAN详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


推荐阅读
  • PyTorch实用技巧汇总(持续更新中)
    空洞卷积(Dilated Convolutions)在卷积操作中通过在卷积核元素之间插入空格来扩大感受野,这一过程由超参数 dilation rate 控制。这种技术在保持参数数量不变的情况下,能够有效地捕捉更大范围的上下文信息,适用于多种视觉任务,如图像分割和目标检测。本文将详细介绍空洞卷积的计算原理及其应用场景。 ... [详细]
  • 在Conda环境中高效配置并安装PyTorch和TensorFlow GPU版的方法如下:首先,创建一个新的Conda环境以避免与基础环境发生冲突,例如使用 `conda create -n pytorch_gpu python=3.7` 命令。接着,激活该环境,确保所有依赖项都正确安装。此外,建议在安装过程中指定CUDA版本,以确保与GPU兼容性。通过这些步骤,可以确保PyTorch和TensorFlow GPU版的顺利安装和运行。 ... [详细]
  • 本文深入解析了PyTorch框架中的`Parameter()`类和`register_parameter()`方法。首先,通过官方文档介绍了`Parameter()`类的基本功能及其在模型参数管理中的作用。接着,详细探讨了`register_parameter()`方法如何将自定义参数添加到模型中,并确保这些参数能够被优化器识别和更新。最后,对比分析了两者的主要差异,帮助读者理解在不同场景下选择合适的方法来管理和优化模型参数。 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 不用蘑菇,不拾金币,我通过强化学习成功通关29关马里奥,创造全新纪录
    《超级马里奥兄弟》由任天堂于1985年首次发布,是一款经典的横版过关游戏,至今已在多个平台上售出超过5亿套。该游戏不仅勾起了许多玩家的童年回忆,也成为强化学习领域的热门研究对象。近日,通过先进的强化学习技术,研究人员成功让AI通关了29关,创造了新的纪录。这一成就不仅展示了强化学习在游戏领域的潜力,也为未来的人工智能应用提供了宝贵的经验。 ... [详细]
  • 本文提供了PyTorch框架中常用的预训练模型的下载链接及详细使用指南,涵盖ResNet、Inception、DenseNet、AlexNet、VGGNet等六大分类模型。每种模型的预训练参数均经过精心调优,适用于多种计算机视觉任务。文章不仅介绍了模型的下载方式,还详细说明了如何在实际项目中高效地加载和使用这些模型,为开发者提供全面的技术支持。 ... [详细]
  • 利用 PyTorch 实现 Python 中的高效矩阵运算 ... [详细]
  • 本文介绍了一款高效的开源OCR文本识别模型,结合了TextBoxes++和RetinaNet的优势。该模型在文本检测方面表现出色,适用于多种场景。项目代码已托管至GitHub,方便研究人员和开发者使用和改进。 ... [详细]
  • 在上一节中,我们完成了网络的前向传播实现。本节将重点探讨如何为检测输出设定目标置信度阈值,并应用非极大值抑制技术以提高检测精度。为了更好地理解和实践这些内容,建议读者已经完成本系列教程的前三部分,并具备一定的PyTorch基础知识。此外,我们将详细介绍这些技术的原理及其在实际应用中的重要性,帮助读者深入理解目标检测算法的核心机制。 ... [详细]
  • 在 PyTorch 中,`pin_memory` 技术用于锁定页面内存。当在创建 `DataLoader` 时将 `pin_memory` 参数设置为 `True`,这意味着生成的 Tensor 数据最初会被存储在锁定的内存中。这一技术能够显著提高数据从 CPU 到 GPU 的传输效率,从而加快训练速度。通过合理利用 `pin_memory`,可以有效减少数据加载的瓶颈,提升整体性能。 ... [详细]
  • 谷歌工程师:TensorFlow已重获新生;网友:我还是用PyTorch
    乾明发自凹非寺量子位报道|公众号QbitAI道友留步!TensorFlow已重获新生。在“PyTorch真香”的潮流中,有人站出来为TensorFlow说话了。这次来自谷歌的工程师 ... [详细]
  • 1.如何进行迁移 使用Pytorch写的模型: 对模型和相应的数据使用.cuda()处理。通过这种方式,我们就可以将内存中的数据复制到GPU的显存中去。 ... [详细]
  • 5.Numpy 索引(一维索引/二维索引)
    本文内容是根据莫烦Python网站的视频整理的笔记,笔记中对代码的注释更加清晰明了,同时根据所有笔记还整理了精简版的思维导图,可在此专栏查看,想观看视频可直接去他的网 ... [详细]
  • python教程分享Pytorchmlu 实现添加逐层算子方法详解
    目录1、注册算子2、算子分发3、修改opmethods基类4、下发算子5、添加wrapper6、添加wrapper7、算子测试本教程分享了在寒武纪设备上pytorch-mlu中添加 ... [详细]
  • [TensorFlow系列3]:初学者是选择Tensorflow2.x还是1.x? 2.x与1.x的主要区别?
    作者主页(文火冰糖的硅基工坊):https:blog.csdn.netHiWangWenBing本文网址:https:blog.csdn.netHiW ... [详细]
author-avatar
rorather_0979107
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有