热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

Pytorch实现权重初始化

今天小编就为大家分享一篇Pytorch实现权重初始化,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

在TensorFlow中,权重的初始化主要是在声明张量的时候进行的。 而PyTorch则提供了另一种方法:首先应该声明张量,然后修改张量的权重。通过调用torch.nn.init包中的多种方法可以将权重初始化为直接访问张量的属性。

1、不初始化的效果

在Pytorch中,定义一个tensor,不进行初始化,打印看看结果:

w = torch.Tensor(3,4)
print (w)

可以看到这时候的初始化的数值都是随机的,而且特别大,这对网络的训练必定不好,最后导致精度提不上,甚至损失无法收敛。

2、初始化的效果

PyTorch提供了多种参数初始化函数:

torch.nn.init.constant(tensor, val)
torch.nn.init.normal(tensor, mean=0, std=1)
torch.nn.init.xavier_uniform(tensor, gain=1)

等等。详细请参考:http://pytorch.org/docs/nn.html#torch-nn-init

注意上面的初始化函数的参数tensor,虽然写的是tensor,但是也可以是Variable类型的。而神经网络的参数类型Parameter是Variable类的子类,所以初始化函数可以直接作用于神经网络参数。实际上,我们初始化也是直接去初始化神经网络的参数。

让我们试试效果:

w = torch.Tensor(3,4)
torch.nn.init.normal_(w)
print (w)

3、初始化神经网络的参数

对神经网络的初始化往往放在模型的__init__()函数中,如下所示:

class Net(nn.Module):

def __init__(self, block, layers, num_classes=1000):
  self.inplanes = 64
  super(Net, self).__init__()
  ***
  *** #定义自己的网络层
  ***

  for m in self.modules():
    if isinstance(m, nn.Conv2d):
      n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
      m.weight.data.normal_(0, math.sqrt(2. / n))
    elif isinstance(m, nn.BatchNorm2d):
      m.weight.data.fill_(1)
      m.bias.data.zero_()

***
*** #定义后续的函数
***

也可以采取另一种方式:

定义一个权重初始化函数,如下:

def weights_init(m):
  classname = m.__class__.__name__
  if classname.find('Conv2d') != -1:
    init.xavier_normal_(m.weight.data)
    init.constant_(m.bias.data, 0.0)
  elif classname.find('Linear') != -1:
    init.xavier_normal_(m.weight.data)
    init.constant_(m.bias.data, 0.0)

在模型声明时,调用初始化函数,初始化神经网络参数:

model = Net(*****)
model.apply(weights_init)

以上这篇Pytorch 实现权重初始化就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


推荐阅读
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 本文探讨了如何在Python中处理长数据的完全显示问题,包括numpy数组、pandas DataFrame以及tensor类型的完整输出设置。 ... [详细]
  • 构建基于BERT的中文NL2SQL模型:一个简明的基准
    本文探讨了将自然语言转换为SQL语句(NL2SQL)的任务,这是人工智能领域中一项非常实用的研究方向。文章介绍了笔者在公司举办的首届中文NL2SQL挑战赛中的实践,该比赛提供了金融和通用领域的表格数据,并标注了对应的自然语言与SQL语句对,旨在训练准确的NL2SQL模型。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 解决Anaconda安装TensorFlow时遇到的TensorBoard版本问题
    本文介绍了在使用Anaconda安装TensorFlow时遇到的“Could not find a version that satisfies the requirement tensorboard”错误,并提供详细的解决方案,包括创建虚拟环境和配置PyCharm项目。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 目录简介torch.bmm()语法作用举例参考结语简介Hello!非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ... [详细]
  • 新手指南:在Windows 10上搭建深度学习与PyTorch开发环境
    本文详细记录了一名新手在Windows 10操作系统上搭建深度学习环境的过程,包括安装必要的软件和配置环境变量等步骤,旨在帮助同样初入该领域的读者避免常见的错误。 ... [详细]
  • 本文档旨在帮助开发者回顾游戏开发中的人工智能技术,涵盖移动算法、群聚行为、路径规划、脚本AI、有限状态机、模糊逻辑、规则式AI、概率论与贝叶斯技术、神经网络及遗传算法等内容。 ... [详细]
  • 如何用GPU服务器运行Python
    如何用GPU服务器运行Python-目录前言一、服务器登录1.1下载安装putty1.2putty远程登录 1.3查看GPU、显卡常用命令1.4Linux常用命令二、 ... [详细]
  • 图神经网络模型综述
    本文综述了图神经网络(Graph Neural Networks, GNN)的发展,从传统的数据存储模型转向图和动态模型,探讨了模型中的显性和隐性结构,并详细介绍了GNN的关键组件及其应用。 ... [详细]
  • 计算机视觉初学者指南:如何顺利入门
    本文旨在为计算机视觉领域的初学者提供一套全面的入门指南,涵盖基础知识、技术工具、学习资源等方面,帮助读者快速掌握计算机视觉的核心概念和技术。 ... [详细]
author-avatar
linkstarter
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有