热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【Python学习】基于KNN模型的葡萄酒种类预测

算法原理K最近邻(KNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。给定测试样本,基于某种距离度量找出训练集中与其最靠近的K个训练样本,然后

算法原理

K最近邻(KNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。

给定测试样本,基于某种距离度量找出训练集中与其最靠近的K个训练样本,然后基于这 K个"邻居"的信息来进行预测。

KNN 算法的核心思想是如果一个样本在特征空间中的 K 个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。


具体步骤

给定训练样本集\(\begin{gather*}S=\{t_1,t_2,t_3...t_s\}\end{gather*}\)和一组类属性\(\begin{gather*}C=\{c_1,c_2,c_3...c_m\}(m\leq s)\end{gather*}\) ,对样本进行分类,KNN 算法的基本步骤为:

(1)先求出 t 与 S 中所有训练样本\(\begin{gather*}t_i(1\leq i \leq s)\end{gather*}\)的距离\(\begin{gather*}dist_{ed}(t,t_i)\end{gather*}\) ,并对所有求出的\(\begin{gather*}dist_{ed}(t,t_i)\end{gather*}\)值递增排序;

(2)选取与待测样本距离最小的 K 个样本,组成集合 N;

(3)统计 N 中 K 个样本所属类别现的频率;

(4)频率最高的类别作为待测样本的类别。


举例说明

如果没看懂上面在说什么,没关系,举个例子这样能更好的理解一下,这里采用的是欧氏距离

image

假设 测试集有2和11,其中K=4;对测试集分别计算其与训练集的欧氏距离,得到如下结果

image

对测试集与训练集的距离进行排序,选取距离最小的前四(k=4)个

image

在测试集2,距离最小的四个(k=4)训练集数据中,属于类别1的有3个,属于类别2的有1个,所以测试集2的类别为1

在测试集11,距离最小的四个(k=4)训练集数据中,属于类别1的有1个,属于类别2的有3个,所以测试集11的类别为2

相信通过这个例子,大家能够很好的理解KNN算法的具体步骤了。

好了,话不多说,下面还是上代码。


KNN算法代码

推荐阅读
  • 致信息安全爱好者的成长指南
    本文旨在为信息安全爱好者提供一份详尽的成长指南,涵盖从学习心态调整到具体技能提升的各个方面。 ... [详细]
  • Python 异步编程:深入理解 asyncio 库(上)
    本文介绍了 Python 3.4 版本引入的标准库 asyncio,该库为异步 IO 提供了强大的支持。我们将探讨为什么需要 asyncio,以及它如何简化并发编程的复杂性,并详细介绍其核心概念和使用方法。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 自学编程与计算机专业背景者的差异分析
    本文探讨了自学编程者和计算机专业毕业生在技能、知识结构及职业发展上的不同之处,结合实际案例分析两者的优势与劣势。 ... [详细]
  • 掌握Python岗位,你需要了解的关键技能
    最近,在社交平台脉脉上,一条关于Python岗位的消息引起了广泛关注。本文将探讨Python岗位的实际价值,并深入解析阿里巴巴等大公司在面试Python开发者时常见的问题。 ... [详细]
  • 本文探讨了数据挖掘技术的发展及其在大数据环境下的应用流程,重点介绍了统计学、在线分析处理、信息检索、机器学习、专家系统和模式识别等领域的最新进展。 ... [详细]
  • 使用R语言进行Foodmart数据的关联规则分析与可视化
    本文探讨了如何利用R语言中的arules和arulesViz包对Foodmart数据集进行关联规则的挖掘与可视化。文章首先介绍了数据集的基本情况,然后逐步展示了如何进行数据预处理、规则挖掘及结果的图形化呈现。 ... [详细]
  • 知识图谱与图神经网络在金融科技中的应用探讨
    本文详细介绍了融慧金科AI Lab负责人张凯博士在2020爱分析·中国人工智能高峰论坛上的演讲,探讨了知识图谱与图神经网络模型如何在金融科技领域发挥重要作用。 ... [详细]
  • 【转】强大的矩阵奇异值分解(SVD)及其应用
    在工程实践中,经常要对大矩阵进行计算,除了使用分布式处理方法以外,就是通过理论方法,对矩阵降维。一下文章,我在 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 本文介绍如何解决在 IIS 环境下 PHP 页面无法找到的问题。主要步骤包括配置 Internet 信息服务管理器中的 ISAPI 扩展和 Active Server Pages 设置,确保 PHP 脚本能够正常运行。 ... [详细]
author-avatar
手机用户2502875921
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有