热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python爬取豆瓣数据实现过程解析

这篇文章主要介绍了Python爬取豆瓣数据实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,

代码如下

from bs4 import BeautifulSoup #网页解析,获取数据
import sys #正则表达式,进行文字匹配
import re
import urllib.request,urllib.error #指定url,获取网页数据
import xlwt #使用表格
import sqlite3
import lxml

以上是引用的库,引用库的方法很简单,直接上图:

上面第一步算有了,下面分模块来,步骤算第二步来:

这个放在开头

def main():
  baseurl ="https://movie.douban.com/top250?start="
  datalist = getData(baseurl)
  savepath=("douban.xls")
  saveData(datalist,savepath)

这个放在末尾

if __name__ == "__main__":
main()

不难看出这是主函数,里面的话是对子函数的调用,下面是第三个步骤:子函数的代码

对网页正则表达提取(放在主函数的后面就可以)

findLink = re.compile(r"") #创建正则表达式对象,表示规则(字符串的模式)
#影片图片
findImg = re.compile(r"",re.S)#re.S取消换行符
#影片片面
findtitle= re.compile(r"(.*?)")
#影片评分
fileRating = re.compile(r"(.*?)")
#找到评价的人数
findJudge = re.compile(r"(d*)人评价")
#找到概识
findInq =re.compile(r"(.*?)")
#找到影片的相关内容
findBd = re.compile(r"

(.*?)

",re.S)

爬数据核心函数

def getData(baseurl):
  datalist=[]
  for i in range(0,10):#调用获取页面的函数10次
    url = baseurl + str(i*25)
    html = askURl(url)
  #逐一解析
    soup = BeautifulSoup(html,"html.parser")
    for item in soup.find_all("div",class_="item"):
    #print(item)
      data=[]
      item = str(item)
 
      link = re.findall(findLink,item)[0] #re库用来通过正则表达式查找指定的字符串
      data.append(link)
      titles =re.findall(findtitle,item)
      if(len(titles)==2):
        ctitle=titles[0].replace("xa0","")
        data.append(ctitle)#添加中文名
        otitle = titles[1].replace("xa0/xa0Perfume:","")
        data.append(otitle)#添加外国名
      else:
        data.append(titles[0])
        data.append(" ")#外国名字留空
 
      imgSrc = re.findall(findImg,item)[0]
      data.append(imgSrc)
 
      rating=re.findall(fileRating,item)[0]
      data.append(rating)
 
      judgenum = re.findall(findJudge,item)[0]
      data.append(judgenum)
 
      inq=re.findall(findInq,item)
      if len(inq) != 0:
        inq =inq[0].replace(".","")
        data.append(inq)
      else:
        data.append(" ")
      bd=re.findall(findBd,item)[0]
      bd=re.sub("(s+)?"," ",bd) #去掉
bd =re.sub("xa0"," ",bd) data.append(bd.strip()) #去掉前后的空格 datalist.append(data) #把处理好的一部电影信息放入datalist return datalist

获取指定网页内容

def askURl(url):
 
  head = {
    "User-Agent": "Mozilla / 5.0(Windows NT 10.0;WOW64) Apple"
    +"WebKit / 537.36(KHTML, likeGecko) Chrome / 78.0.3904.108 Safari / 537.36"
  }
#告诉豆瓣我们是浏览器我们可以接受什么水平的内容
  request = urllib.request.Request(url,headers=head)
  html=""
  try:
    respOnse= urllib.request.urlopen(request)
    html = response.read().decode("utf-8")
    # print(html)
  except urllib.error.URLError as e:
    if hasattr(e,"code"):
      print(e.code)
    if hasattr(e,"reason"):
      print(e.reason)
  return html

将爬下来的数据保存到表格中

ef saveData(datalist,savepath):
  print("保存中。。。")
  book = xlwt.Workbook(encoding="utf-8",style_compression=0) # 创建workbook对象
  sheet = book.add_sheet("douban",cell_overwrite_ok=True) #创建工作表 cell_overwrite_ok表示直接覆盖
  col = ("电影详情链接","影片中文网","影片外国名","图片链接","评分","评价数","概况","相关信息")
  for i in range(0,8):
    sheet.write(0,i,col[i])
  for i in range(0,250):
    print("第%d条" %(i+1))
    data = datalist[i]
    for j in range(0,8):
      sheet.write(i+1,j,data[j])
 
  book.save(savepath)

以上就是整个爬数据的整个程序,这仅仅是一个非常简单的爬取,如果想要爬更难的网页需要实时分析

整个程序代码

from bs4 import BeautifulSoup #网页解析,获取数据
import sys #正则表达式,进行文字匹配
import re
import urllib.request,urllib.error #指定url,获取网页数据
import xlwt #使用表格
import sqlite3
import lxml
 
def main():
  baseurl ="https://movie.douban.com/top250?start="
  datalist = getData(baseurl)
  savepath=("douban.xls")
  saveData(datalist,savepath)
#影片播放链接
findLink = re.compile(r"") #创建正则表达式对象,表示规则(字符串的模式)
#影片图片
findImg = re.compile(r"",re.S)#re.S取消换行符
#影片片面
findtitle= re.compile(r"(.*?)")
#影片评分
fileRating = re.compile(r"(.*?)")
#找到评价的人数
findJudge = re.compile(r"(d*)人评价")
#找到概识
findInq =re.compile(r"(.*?)")
#找到影片的相关内容
findBd = re.compile(r"

(.*?)

",re.S) def getData(baseurl): datalist=[] for i in range(0,10):#调用获取页面的函数10次 url = baseurl + str(i*25) html = askURl(url) #逐一解析 soup = BeautifulSoup(html,"html.parser") for item in soup.find_all("div",class_="item"): #print(item) data=[] item = str(item) link = re.findall(findLink,item)[0] #re库用来通过正则表达式查找指定的字符串 data.append(link) titles =re.findall(findtitle,item) if(len(titles)==2): ctitle=titles[0].replace("xa0","") data.append(ctitle)#添加中文名 otitle = titles[1].replace("xa0/xa0Perfume:","") data.append(otitle)#添加外国名 else: data.append(titles[0]) data.append(" ")#外国名字留空 imgSrc = re.findall(findImg,item)[0] data.append(imgSrc) rating=re.findall(fileRating,item)[0] data.append(rating) judgenum = re.findall(findJudge,item)[0] data.append(judgenum) inq=re.findall(findInq,item) if len(inq) != 0: inq =inq[0].replace(".","") data.append(inq) else: data.append(" ") bd=re.findall(findBd,item)[0] bd=re.sub("(s+)?"," ",bd) #去掉
bd =re.sub("xa0"," ",bd) data.append(bd.strip()) #去掉前后的空格 datalist.append(data) #把处理好的一部电影信息放入datalist return datalist #得到指定一个url的网页内容 def askURl(url): head = { "User-Agent": "Mozilla / 5.0(Windows NT 10.0;WOW64) Apple" +"WebKit / 537.36(KHTML, likeGecko) Chrome / 78.0.3904.108 Safari / 537.36" } #告诉豆瓣我们是浏览器我们可以接受什么水平的内容 request = urllib.request.Request(url,headers=head) html="" try: respOnse= urllib.request.urlopen(request) html = response.read().decode("utf-8") # print(html) except urllib.error.URLError as e: if hasattr(e,"code"): print(e.code) if hasattr(e,"reason"): print(e.reason) return html def saveData(datalist,savepath): print("保存中。。。") book = xlwt.Workbook(encoding="utf-8",style_compression=0) # 创建workbook对象 sheet = book.add_sheet("douban",cell_overwrite_ok=True) #创建工作表 cell_overwrite_ok表示直接覆盖 col = ("电影详情链接","影片中文网","影片外国名","图片链接","评分","评价数","概况","相关信息") for i in range(0,8): sheet.write(0,i,col[i]) for i in range(0,250): print("第%d条" %(i+1)) data = datalist[i] for j in range(0,8): sheet.write(i+1,j,data[j]) book.save(savepath) if __name__ == "__main__": main()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程笔记。

原文链接:https://www.cnblogs.com/yangxunkai/p/13832508.html


推荐阅读
  • Jupyter Notebook多语言环境搭建指南
    本文详细介绍了如何在Linux环境下为Jupyter Notebook配置Python、Python3、R及Go四种编程语言的环境,包括必要的软件安装和配置步骤。 ... [详细]
  • Requests库的基本使用方法
    本文介绍了Python中Requests库的基础用法,包括如何安装、GET和POST请求的实现、如何处理Cookies和Headers,以及如何解析JSON响应。相比urllib库,Requests库提供了更为简洁高效的接口来处理HTTP请求。 ... [详细]
  • 如何将955万数据表的17秒SQL查询优化至300毫秒
    本文详细介绍了通过优化SQL查询策略,成功将一张包含955万条记录的财务流水表的查询时间从17秒缩短至300毫秒的方法。文章不仅提供了具体的SQL优化技巧,还深入探讨了背后的数据库原理。 ... [详细]
  • Web动态服务器Python基本实现
    Web动态服务器Python基本实现 ... [详细]
  • HTML:  将文件拖拽到此区域 ... [详细]
  • 在尝试使用 Android 发送 SOAP 请求时遇到错误,服务器返回 '无法处理请求' 的信息,并指出某个值不能为 null。本文探讨了可能的原因及解决方案。 ... [详细]
  • 二维码的实现与应用
    本文介绍了二维码的基本概念、分类及其优缺点,并详细描述了如何使用Java编程语言结合第三方库(如ZXing和qrcode.jar)来实现二维码的生成与解析。 ... [详细]
  • 本文探讨了如何通过Service Locator模式来简化和优化在B/S架构中的服务命名访问,特别是对于需要频繁访问的服务,如JNDI和XMLNS。该模式通过缓存机制减少了重复查找的成本,并提供了对多种服务的统一访问接口。 ... [详细]
  • 本文将从基础概念入手,详细探讨SpringMVC框架中DispatcherServlet如何通过HandlerMapping进行请求分发,以及其背后的源码实现细节。 ... [详细]
  • 深入理解:AJAX学习指南
    本文详细探讨了AJAX的基本概念、工作原理及其在现代Web开发中的应用,旨在为初学者提供全面的学习资料。 ... [详细]
  • protobuf 使用心得:解析与编码陷阱
    本文记录了一次在广告系统中使用protobuf进行数据交换时遇到的问题及其解决过程。通过这次经历,我们将探讨protobuf的特性和编码机制,帮助开发者避免类似的陷阱。 ... [详细]
  • 在Python编程中,经常需要处理文件下载的任务。本文将介绍三种常用的下载方法:使用urllib、urllib2以及requests库进行HTTP请求下载,同时也会提及如何通过ftplib从FTP服务器下载文件。 ... [详细]
  • 本文详细介绍了Elasticsearch中的分页查询机制,包括基本的分页查询流程、'from-size'浅分页与'scroll'深分页的区别及应用场景,以及两者在性能上的对比。 ... [详细]
  • 本文详细介绍了如何在Android L版本中应用Material Design的主题和布局,包括Material主题的应用方法、自定义主题和颜色方案、状态栏和导航条的自定义,以及Material Design布局的特点和兼容性处理。 ... [详细]
  • 本文介绍了如何通过 XMLHttpRequest 对象在不同浏览器中实现 AJAX 的 POST 和 GET 请求,并详细说明了 XMLHttpRequest 的五个状态及其含义。 ... [详细]
author-avatar
粉红涩色
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有