热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python爬取豆瓣数据实现过程解析

这篇文章主要介绍了Python爬取豆瓣数据实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,

代码如下

from bs4 import BeautifulSoup #网页解析,获取数据
import sys #正则表达式,进行文字匹配
import re
import urllib.request,urllib.error #指定url,获取网页数据
import xlwt #使用表格
import sqlite3
import lxml

以上是引用的库,引用库的方法很简单,直接上图:

上面第一步算有了,下面分模块来,步骤算第二步来:

这个放在开头

def main():
  baseurl ="https://movie.douban.com/top250?start="
  datalist = getData(baseurl)
  savepath=("douban.xls")
  saveData(datalist,savepath)

这个放在末尾

if __name__ == "__main__":
main()

不难看出这是主函数,里面的话是对子函数的调用,下面是第三个步骤:子函数的代码

对网页正则表达提取(放在主函数的后面就可以)

findLink = re.compile(r"") #创建正则表达式对象,表示规则(字符串的模式)
#影片图片
findImg = re.compile(r"",re.S)#re.S取消换行符
#影片片面
findtitle= re.compile(r"(.*?)")
#影片评分
fileRating = re.compile(r"(.*?)")
#找到评价的人数
findJudge = re.compile(r"(d*)人评价")
#找到概识
findInq =re.compile(r"(.*?)")
#找到影片的相关内容
findBd = re.compile(r"

(.*?)

",re.S)

爬数据核心函数

def getData(baseurl):
  datalist=[]
  for i in range(0,10):#调用获取页面的函数10次
    url = baseurl + str(i*25)
    html = askURl(url)
  #逐一解析
    soup = BeautifulSoup(html,"html.parser")
    for item in soup.find_all("div",class_="item"):
    #print(item)
      data=[]
      item = str(item)
 
      link = re.findall(findLink,item)[0] #re库用来通过正则表达式查找指定的字符串
      data.append(link)
      titles =re.findall(findtitle,item)
      if(len(titles)==2):
        ctitle=titles[0].replace("xa0","")
        data.append(ctitle)#添加中文名
        otitle = titles[1].replace("xa0/xa0Perfume:","")
        data.append(otitle)#添加外国名
      else:
        data.append(titles[0])
        data.append(" ")#外国名字留空
 
      imgSrc = re.findall(findImg,item)[0]
      data.append(imgSrc)
 
      rating=re.findall(fileRating,item)[0]
      data.append(rating)
 
      judgenum = re.findall(findJudge,item)[0]
      data.append(judgenum)
 
      inq=re.findall(findInq,item)
      if len(inq) != 0:
        inq =inq[0].replace(".","")
        data.append(inq)
      else:
        data.append(" ")
      bd=re.findall(findBd,item)[0]
      bd=re.sub("(s+)?"," ",bd) #去掉
bd =re.sub("xa0"," ",bd) data.append(bd.strip()) #去掉前后的空格 datalist.append(data) #把处理好的一部电影信息放入datalist return datalist

获取指定网页内容

def askURl(url):
 
  head = {
    "User-Agent": "Mozilla / 5.0(Windows NT 10.0;WOW64) Apple"
    +"WebKit / 537.36(KHTML, likeGecko) Chrome / 78.0.3904.108 Safari / 537.36"
  }
#告诉豆瓣我们是浏览器我们可以接受什么水平的内容
  request = urllib.request.Request(url,headers=head)
  html=""
  try:
    respOnse= urllib.request.urlopen(request)
    html = response.read().decode("utf-8")
    # print(html)
  except urllib.error.URLError as e:
    if hasattr(e,"code"):
      print(e.code)
    if hasattr(e,"reason"):
      print(e.reason)
  return html

将爬下来的数据保存到表格中

ef saveData(datalist,savepath):
  print("保存中。。。")
  book = xlwt.Workbook(encoding="utf-8",style_compression=0) # 创建workbook对象
  sheet = book.add_sheet("douban",cell_overwrite_ok=True) #创建工作表 cell_overwrite_ok表示直接覆盖
  col = ("电影详情链接","影片中文网","影片外国名","图片链接","评分","评价数","概况","相关信息")
  for i in range(0,8):
    sheet.write(0,i,col[i])
  for i in range(0,250):
    print("第%d条" %(i+1))
    data = datalist[i]
    for j in range(0,8):
      sheet.write(i+1,j,data[j])
 
  book.save(savepath)

以上就是整个爬数据的整个程序,这仅仅是一个非常简单的爬取,如果想要爬更难的网页需要实时分析

整个程序代码

from bs4 import BeautifulSoup #网页解析,获取数据
import sys #正则表达式,进行文字匹配
import re
import urllib.request,urllib.error #指定url,获取网页数据
import xlwt #使用表格
import sqlite3
import lxml
 
def main():
  baseurl ="https://movie.douban.com/top250?start="
  datalist = getData(baseurl)
  savepath=("douban.xls")
  saveData(datalist,savepath)
#影片播放链接
findLink = re.compile(r"") #创建正则表达式对象,表示规则(字符串的模式)
#影片图片
findImg = re.compile(r"",re.S)#re.S取消换行符
#影片片面
findtitle= re.compile(r"(.*?)")
#影片评分
fileRating = re.compile(r"(.*?)")
#找到评价的人数
findJudge = re.compile(r"(d*)人评价")
#找到概识
findInq =re.compile(r"(.*?)")
#找到影片的相关内容
findBd = re.compile(r"

(.*?)

",re.S) def getData(baseurl): datalist=[] for i in range(0,10):#调用获取页面的函数10次 url = baseurl + str(i*25) html = askURl(url) #逐一解析 soup = BeautifulSoup(html,"html.parser") for item in soup.find_all("div",class_="item"): #print(item) data=[] item = str(item) link = re.findall(findLink,item)[0] #re库用来通过正则表达式查找指定的字符串 data.append(link) titles =re.findall(findtitle,item) if(len(titles)==2): ctitle=titles[0].replace("xa0","") data.append(ctitle)#添加中文名 otitle = titles[1].replace("xa0/xa0Perfume:","") data.append(otitle)#添加外国名 else: data.append(titles[0]) data.append(" ")#外国名字留空 imgSrc = re.findall(findImg,item)[0] data.append(imgSrc) rating=re.findall(fileRating,item)[0] data.append(rating) judgenum = re.findall(findJudge,item)[0] data.append(judgenum) inq=re.findall(findInq,item) if len(inq) != 0: inq =inq[0].replace(".","") data.append(inq) else: data.append(" ") bd=re.findall(findBd,item)[0] bd=re.sub("(s+)?"," ",bd) #去掉
bd =re.sub("xa0"," ",bd) data.append(bd.strip()) #去掉前后的空格 datalist.append(data) #把处理好的一部电影信息放入datalist return datalist #得到指定一个url的网页内容 def askURl(url): head = { "User-Agent": "Mozilla / 5.0(Windows NT 10.0;WOW64) Apple" +"WebKit / 537.36(KHTML, likeGecko) Chrome / 78.0.3904.108 Safari / 537.36" } #告诉豆瓣我们是浏览器我们可以接受什么水平的内容 request = urllib.request.Request(url,headers=head) html="" try: respOnse= urllib.request.urlopen(request) html = response.read().decode("utf-8") # print(html) except urllib.error.URLError as e: if hasattr(e,"code"): print(e.code) if hasattr(e,"reason"): print(e.reason) return html def saveData(datalist,savepath): print("保存中。。。") book = xlwt.Workbook(encoding="utf-8",style_compression=0) # 创建workbook对象 sheet = book.add_sheet("douban",cell_overwrite_ok=True) #创建工作表 cell_overwrite_ok表示直接覆盖 col = ("电影详情链接","影片中文网","影片外国名","图片链接","评分","评价数","概况","相关信息") for i in range(0,8): sheet.write(0,i,col[i]) for i in range(0,250): print("第%d条" %(i+1)) data = datalist[i] for j in range(0,8): sheet.write(i+1,j,data[j]) book.save(savepath) if __name__ == "__main__": main()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程笔记。

原文链接:https://www.cnblogs.com/yangxunkai/p/13832508.html


推荐阅读
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 深入理解Tornado模板系统
    本文详细介绍了Tornado框架中模板系统的使用方法。Tornado自带的轻量级、高效且灵活的模板语言位于tornado.template模块,支持嵌入Python代码片段,帮助开发者快速构建动态网页。 ... [详细]
  • 本文详细介绍 Go+ 编程语言中的上下文处理机制,涵盖其基本概念、关键方法及应用场景。Go+ 是一门结合了 Go 的高效工程开发特性和 Python 数据科学功能的编程语言。 ... [详细]
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 导航栏样式练习:项目实例解析
    本文详细介绍了如何创建一个具有动态效果的导航栏,包括HTML、CSS和JavaScript代码的实现,并附有详细的说明和效果图。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • PHP 5.2.5 安装与配置指南
    本文详细介绍了 PHP 5.2.5 的安装和配置步骤,帮助开发者解决常见的环境配置问题,特别是上传图片时遇到的错误。通过本教程,您可以顺利搭建并优化 PHP 运行环境。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 数据库内核开发入门 | 搭建研发环境的初步指南
    本课程将带你从零开始,逐步掌握数据库内核开发的基础知识和实践技能,重点介绍如何搭建OceanBase的开发环境。 ... [详细]
  • 本文深入探讨 MyBatis 中动态 SQL 的使用方法,包括 if/where、trim 自定义字符串截取规则、choose 分支选择、封装查询和修改条件的 where/set 标签、批量处理的 foreach 标签以及内置参数和 bind 的用法。 ... [详细]
  • 本文介绍如何使用 Python 编写程序,检查给定列表中的元素是否形成交替峰值模式。我们将探讨两种不同的方法来实现这一目标,并提供详细的代码示例。 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
author-avatar
粉红涩色
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有