热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python量化交易05——基于多因子选择和选股策略(随机森林,LGBM)

参考书目:深入浅出Python量化交易实战在机器学习里面的X叫做特征变量,在统计学里面叫做协变量也叫自变量,在量化投资里面则叫做因子,所谓

  参考书目:深入浅出Python量化交易实战



在机器学习里面的X叫做特征变量,在统计学里面叫做协变量也叫自变量,在量化投资里面则叫做因子,所谓多因子就是有很多的特征变量。

本次带来的就是多因子模型,并且使用的是机器学习的强大的非线性模型,集成学习里面的随机森林和LGBM模型,带来因子的选择策略和股票的选择策略。



由于股票数据的获取都需要第三方库或者是专业的量化投资框架,很多第三方库某些功能需要收费(Tushare),而免费的一些库(证券宝)获取的数据特征变量又没那么多。所以这里是用聚宽量化投资框架,是可以免费使用一些功能的(只需要注册一个账号)。这里获取数据就采用聚宽平台的功能了。




数据获取

本次使用沪深300作为股票池,选获取一些财务指标:

#创建query对象,指定获取股票的代码、市值、净运营资本
#净债务、产权比率、股东权益比率、营收增长率、换手率、
#市盈率(PE)、市净率(PB)、市销率(PS)、总资产收益率因子


#还是先导入jqdata和技术分析工具
import jqdata
from jqlib.technical_analysis import *
#同样选择沪深300成分股做股票池
stocks = get_index_stocks('000300.XSHG')q = query(valuation.code, valuation.market_cap,balance.total_current_assets- balance.total_current_liability,balance.total_liability- balance.total_assets,balance.total_liability/balance.equities_parent_company_owners,(balance.total_assets-balance.total_current_assets)/balance.total_assets,balance.equities_parent_company_owners/balance.total_assets,indicator.inc_total_revenue_year_on_year,valuation.turnover_ratio,valuation.pe_ratio,valuation.pb_ratio,valuation.ps_ratio,indicator.roa).filter(valuation.code.in_(stocks))
#将获得的因子值存入一个数据表
df = get_fundamentals(q, date = None)
#把数据表的字段名指定为对应的因子名
df.columns = ['code', '市值', '净营运资本', '净债务', '产权比率','非流动资产比率','股东权益比率', '营收增长率','换手率','PE','PB','PS','总资产收益率']
#检查结果
df.head()

 需要在聚宽的环境才能获得上面的数据,本地Python是出不来的。

设置一下股票代码作为索引,获取一些时间格式。

#将股票代码作为数据表的index
df.index = df.code.values
#使用del也可以删除列
del df['code']
#下面来把时间变量都定义好
today = datetime.datetime.today()
#设定3个时间差,分别是50天,1天和2天
delta50 = datetime.timedelta(days=50)
delta1 = datetime.timedelta(days=1)
delta2 = datetime.timedelta(days=2)
#50日前作为一个历史节点
history = today - delta50
#再计算昨天和2天前的日期
yesterday = today - delta1
two_days_ago = today - delta2

再然后获取一些技术指标数据:

#下面就获取股票的动量线、成交量、累计能量线、平均差、
#指数移动平均、移动平均、乖离率等因子
#时间范围都设为10天


df['动量线']=list(MTM(df.index, two_days_ago, timeperiod=10, unit = '1d', include_now = True, fq_ref_date = None).values())df['成交量']=list(VOL(df.index, two_days_ago, M1=10 ,unit = '1d', include_now = True, fq_ref_date = None)[0].values())df['累计能量线']=list(OBV(df.index,check_date=two_days_ago, timeperiod=10).values())df['平均差']=list(DMA(df.index, two_days_ago, N1 = 10, unit = '1d', include_now = True, fq_ref_date = None)[0].values())df['指数移动平均']=list(EMA(df.index, two_days_ago, timeperiod=10, unit = '1d', include_now = True, fq_ref_date = None).values())df['移动平均']=list(MA(df.index, two_days_ago, timeperiod=10, unit = '1d', include_now = True, fq_ref_date = None).values())df['乖离率']=list(BIAS(df.index,two_days_ago, N1=10, unit = '1d', include_now = True, fq_ref_date = None)[0].values())
#把数据表中的空值用0来代替
df.fillna(0,inplace=True)
#检查是否成功
df.head()

这样就获得了很多X,即特征变量,即因子。

下面构建y,我们的响应变量是一个分类的变量,即是否获得了超过市场的平均回报的收益率,是的话为1,不是为0 。

这里使用前一日的收盘价除以前50天的收盘价 然后减去1,作为收益率的值,计算出那些收益率大于均值的样本股则y为1 ,否则为0 。

#获取股票前一日的收盘价
df['close1']=list(get_price(stocks, end_date=yesterday, count = 1,fq='pre',panel=False)['close'])
#获取股票50日前的收盘价
df['close2']=list(get_price(stocks, end_date=history, count = 1,fq ='pre',panel=False)['close'])#计算出收益
df['return']=df['close1']/df['close2']-1
#如果收益大于平均水平,则标记为1
#否则标记为0
df['signal']=np.where(df['return']#检查是否成功
df.head()

 可以看到最后一列是我们的响应变量y。




模型构建

将X和y都准备好。划分训练集和测试集,导入随机森林分类器。

#导入数据集拆分工具
from sklearn.model_selection import train_test_split
#导入随机森林分类器
from sklearn.ensemble import RandomForestClassifier
#把因子值作为样本的特征,所以要去掉刚刚添加的几个字段
X = df.drop(['close1', 'close2', 'return', 'signal'], axis = 1)
#把signal作为分类标签
y = df['signal']
#将数据拆分为训练集和验证集
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size = 0.2)
#创建随机森林分类器实例,指定random_state便于复现
clf = RandomForestClassifier(n_estimators=5000,random_state=100)
#拟合训练集数据
clf.fit(X_train, y_train)
#查看分类器在训练集和验证集中的准确率
print(clf.score(X_train, y_train),clf.score(X_test, y_test))

 

分类问题,所以采用随机森林分类器,然后进行拟合和评价。

可以看到在训练集上的准确率为100%,在测试集删高的准确率为0.9333,说明模型的拟合效果很不错。



 


 因子重要性

接下来使用随机森林的变量的重要性排序,原理是基础学习器决策树分裂时,若一个变量分裂时让损失函数下降得越多,说明这个变量越重要。

#为了便于观察,我们创建一个数据表
#数据表有两个字段,分别是特征名和重要性
#特征名就是因子的名称


factor_weight = pd.DataFrame({'features':list(X.columns),'importance':clf.feature_importances_}).sort_values(#这里根据重要程度降序排列,一遍遍找到重要性最高的特征by='importance', ascending = False)
#检查结果
factor_weight

 可以看到最重要的变量是技术指标平均差。这也是肯定的,因为平均差里面包含了过去和现在的股价信息最多,和我们的响应变量最为相似。

画图更加直观的查看变量重要性排序。

import seaborn as sns
plt.figure(figsize=(6,4),dpi=128)
sns.barplot(y=factor_weight['features'],x=factor_weight['importance'],orient="h")
plt.xlabel('重要程度')
plt.ylabel('因子名称')
plt.xticks(fOntsize=10,rotation=35)
plt.title("因子重要性对比")
plt.show()

 和上面结论一样,技术指标平均差对我们的响应变量是否获得超额回报的影响最大,然后是公司本身的财务指标,营业收入增长率,净收运营资本等。




选股策略

接下来我们使用对于表格数据最强的机器学习方法,轻量梯度提升方法——LGBM模型,对我们的股票市值进行预测,然后选取实际值和预测值差距最大的股票作为选股策略。即选取价值被低估的股票。

此时y是股票市值,X是前面那些财务技术指标

X=df.iloc[:,1:-3]
y=df.iloc[:,0]

构建回归器

from lightgbm import LGBMRegressor
model = LGBMRegressor(n_estimators=100,objective='regression', random_state=0)
model.fit(X, y)
model.score(X, y)

 整体模型的拟合优度为86%,还不错。

用真实值减去预测值,然后进行排序,算的找出前10 的被低估的公司

diff = pd.DataFrame(np.array(y)-model.predict(X), index = y.index, columns = ['预测值和真实值的差值'])
#将该数据表中的值,按生序进行排列
diff = diff.sort_values(by = '预测值和真实值的差值', ascending = True)
#找到市值被低估最多的10只股票
diff.head(10)

 前十都是被低估了,负得越多说明被低估的越厉害。



 受限于框架的使用,该策略我本人没有进行回测检验其收益率。书上的收益率大概是年化6%,不高,但是也算不错了。

(本案例仅作为策略研究,不构成任何投资意见。)


推荐阅读
  • 寒假作业解析:第三周 2月12日 第7题
    尽快完成之前的练习任务!每日一练2.1 Problem A Laurenty and Shop 的题目要求是选择两条不同的路线以最小化总的等待时间。简要分析:通过对比不同路线的等待时间,可以找到最优解。此问题可以通过动态规划或贪心算法来解决,具体取决于路线的复杂性和约束条件。 ... [详细]
  • Ihavetwomethodsofgeneratingmdistinctrandomnumbersintherange[0..n-1]我有两种方法在范围[0.n-1]中生 ... [详细]
  • 投融资周报 | Circle 达成 4 亿美元融资协议,唯一艺术平台 A 轮融资超千万美元 ... [详细]
  • 为了评估精心优化的模型与策略在实际环境中的表现,Google对其实验框架进行了全面升级,旨在实现更高效、更精准和更快速的在线测试。新的框架支持更多的实验场景,提供更好的数据洞察,并显著缩短了实验周期,从而加速产品迭代和优化过程。 ... [详细]
  • 当前,众多初创企业对全栈工程师的需求日益增长,但市场中却存在大量所谓的“伪全栈工程师”,尤其是那些仅掌握了Node.js技能的前端开发人员。本文旨在深入探讨全栈工程师在现代技术生态中的真实角色与价值,澄清对这一角色的误解,并强调真正的全栈工程师应具备全面的技术栈和综合解决问题的能力。 ... [详细]
  • 解决Only fullscreen opaque activities can request orientation错误的方法
    本文介绍了在使用PictureSelectorLight第三方框架时遇到的Only fullscreen opaque activities can request orientation错误,并提供了一种有效的解决方案。 ... [详细]
  • 本文介绍如何使用线段树解决洛谷 P1531 我讨厌它问题,重点在于单点更新和区间查询最大值。 ... [详细]
  • 单片微机原理P3:80C51外部拓展系统
      外部拓展其实是个相对来说很好玩的章节,可以真正开始用单片机写程序了,比较重要的是外部存储器拓展,81C55拓展,矩阵键盘,动态显示,DAC和ADC。0.IO接口电路概念与存 ... [详细]
  • [转]doc,ppt,xls文件格式转PDF格式http:blog.csdn.netlee353086articledetails7920355确实好用。需要注意的是#import ... [详细]
  • 解决Bootstrap DataTable Ajax请求重复问题
    在最近的一个项目中,我们使用了JQuery DataTable进行数据展示,虽然使用起来非常方便,但在测试过程中发现了一个问题:当查询条件改变时,有时查询结果的数据不正确。通过FireBug调试发现,点击搜索按钮时,会发送两次Ajax请求,一次是原条件的请求,一次是新条件的请求。 ... [详细]
  • SQLite数据库CRUD操作实例分析与应用
    本文通过分析和实例演示了SQLite数据库中的CRUD(创建、读取、更新和删除)操作,详细介绍了如何在Java环境中使用Person实体类进行数据库操作。文章首先阐述了SQLite数据库的基本概念及其在移动应用开发中的重要性,然后通过具体的代码示例,逐步展示了如何实现对Person实体类的增删改查功能。此外,还讨论了常见错误及其解决方法,为开发者提供了实用的参考和指导。 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • 在高清节目的高比特率传输过程中,使用外接USB硬盘进行时间平移(timeshift)时,出现了性能不足和流数据丢失的问题。通过深入研究,我们发现通过对图像组(GOP)和图像头(I-frame)的精确定位技术进行优化,可以显著提升系统的性能和稳定性。本研究提出了改进的图像组与图像头定位算法,有效减少了数据丢失,提高了流媒体传输的效率和质量。 ... [详细]
  • 深入RTOS实践,面对原子操作提问竟感困惑
    在实时操作系统(RTOS)的实践中,尽管已经积累了丰富的经验,但在面对原子操作的具体问题时,仍感到困惑。本文将深入探讨RTOS中的原子操作机制,分析其在多任务环境下的重要性和实现方式,并结合实际案例解析常见的问题及解决方案,帮助读者更好地理解和应用这一关键技术。 ... [详细]
  • 本文详细介绍了 Sublime Text 3 在 2021 年的激活密钥及其在线激活方法。用户可以通过提供的链接访问云海天教程,获取更多详细的激活码信息和操作步骤。此外,文章还提供了安全可靠的激活方案,帮助用户顺利激活软件,提升编程效率。 ... [详细]
author-avatar
echo7111436
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有