热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

PythonSklearn.metrics简介及应用示例

PythonSklearn.metrics简介及应用示例利用Python进行各种机器学习算法的实现时,经常会用到sklearn(scikit-learn

Python Sklearn.metrics 简介及应用示例

利用Python进行各种机器学习算法的实现时,经常会用到sklearn(scikit-learn)这个模块/库。

无论利用机器学习算法进行回归、分类或者聚类时,评价指标,即检验机器学习模型效果的定量指标,都是一个不可避免且十分重要的问题。因此,结合scikit-learn主页上的介绍,以及网上大神整理的一些资料,对常用的评价指标及其实现、应用进行简单介绍。

一、 scikit-learn安装

网上教程很多,此处不再赘述,具体可以参照:
https://www.cnblogs.com/zhangqunshi/p/6646987.html
此外,如果安装了Anoconda,可以直接从Anoconda Navigator——Environment里面搜索添加。
pip install -U scikit-learn

二、 scikit-learn.metrics导入与调用

有两种方式导入:

方式一:

from sklearn.metrics import 评价指标函数名称

例如:

from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score

调用方式为:直接使用函数名调用
计算均方误差mean squared error

mse = mean_squared_error(y_test, y_pre)

计算回归的决定系数R2

R2 = r2_score(y_test,y_pre)

方式二:

from sklearn import metrics

调用方式为:metrics.评价指标函数名称(parameter)

例如:
计算均方误差mean squared error

mse = metrics.mean_squared_error(y_test, y_pre)

计算回归的决定系数R2

R2 = metrics.r2_score(y_test,y_pre)

三、 scikit-learn.metrics里各种指标简介

简单介绍参见:
https://www.cnblogs.com/mdevelopment/p/9456486.html
详细介绍参见:
https://www.cnblogs.com/harvey888/p/6964741.html
官网介绍:
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

转自第一个链接的内容,简单介绍内容如下:

回归指标

explained_variance_score(y_true, y_pred, sample_weight=None, multioutput=‘uniform_average’):回归方差(反应自变量与因变量之间的相关程度)

mean_absolute_error(y_true,y_pred,sample_weight=None,
multioutput=‘uniform_average’):
平均绝对误差

mean_squared_error(y_true, y_pred, sample_weight=None, multioutput=‘uniform_average’):均方差

median_absolute_error(y_true, y_pred) 中值绝对误差

r2_score(y_true, y_pred,sample_weight=None,multioutput=‘uniform_average’) :R平方值

分类指标

accuracy_score(y_true,y_pre) : 精度

auc(x, y, reorder=False) : ROC曲线下的面积;较大的AUC代表了较好的performance。

average_precision_score(y_true, y_score, average=‘macro’, sample_weight=None):根据预测得分计算平均精度(AP)

brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=None):The smaller the Brier score, the better.

confusion_matrix(y_true, y_pred, labels=None, sample_weight=None):通过计算混淆矩阵来评估分类的准确性 返回混淆矩阵

f1_score(y_true, y_pred, labels=None, pos_label=1, average=‘binary’, sample_weight=None): F1值
  F1 = 2 * (precision * recall) / (precision + recall) precision(查准率)=TP/(TP+FP) recall(查全率)=TP/(TP+FN)

log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None, labels=None):对数损耗,又称逻辑损耗或交叉熵损耗

precision_score(y_true, y_pred, labels=None, pos_label=1, average=‘binary’,) :查准率或者精度; precision(查准率)=TP/(TP+FP)

recall_score(y_true, y_pred, labels=None, pos_label=1, average=‘binary’, sample_weight=None):查全率 ;recall(查全率)=TP/(TP+FN)

roc_auc_score(y_true, y_score, average=‘macro’, sample_weight=None):计算ROC曲线下的面积就是AUC的值,the larger the better

roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True);计算ROC曲线的横纵坐标值,TPR,FPR
  TPR = TP/(TP+FN) = recall(真正例率,敏感度) FPR = FP/(FP+TN)(假正例率,1-特异性)

四、 一个应用实例

结合官网的案例,利用自己的数据,实现的一个应用实例:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import ensemble
from sklearn import metrics

##############################################################################
# Load data
data = pd.read_csv('Data for train_0.003D.csv')
y = data.iloc[:,0]
X = data.iloc[:,1:]
offset = int(X.shape[0] * 0.9)
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]

##############################################################################
# Fit regression model
params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 2,
'learning_rate': 0.01, 'loss': 'ls'}
clf = ensemble.GradientBoostingRegressor(**params)

clf.fit(X_train, y_train)
y_pre = clf.predict(X_test)

# Calculate metrics
mse = metrics.mean_squared_error(y_test, y_pre)
print("MSE: %.4f" % mse)

mae = metrics.mean_absolute_error(y_test, y_pre)
print("MAE: %.4f" % mae)

R2 = metrics.r2_score(y_test,y_pre)
print("R2: %.4f" % R2)

##############################################################################
# Plot training deviance

# compute test set deviance
test_score = np.zeros((params['n_estimators'],), dtype=np.float64)

for i, y_pred in enumerate(clf.staged_predict(X_test)):
test_score[i] = clf.loss_(y_test, y_pred)

plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title('Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-',
label='Training Set Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-',
label='Test Set Deviance')
plt.legend(loc='upper right')
plt.xlabel('Boosting Iterations')
plt.ylabel('Deviance')

##############################################################################
# Plot feature importance
feature_importance = clf.feature_importances_
# make importances relative to max importance
feature_importance = 100.0 * (feature_importance / feature_importance.max())
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
plt.subplot(1, 2, 2)
plt.barh(pos, feature_importance[sorted_idx], align='center')
plt.yticks(pos, X.columns[sorted_idx])

plt.xlabel('Relative Importance')
plt.title('Variable Importance')
plt.show()

 

转:https://www.cnblogs.com/Yanjy-OnlyOne/p/11251523.html



推荐阅读
  • 前言:拿到一个案例,去分析:它该是做分类还是做回归,哪部分该做分类,哪部分该做回归,哪部分该做优化,它们的目标值分别是什么。再挑影响因素,哪些和分类有关的影响因素,哪些和回归有关的 ... [详细]
  • 超级简单加解密工具的方案和功能
    本文介绍了一个超级简单的加解密工具的方案和功能。该工具可以读取文件头,并根据特定长度进行加密,加密后将加密部分写入源文件。同时,该工具也支持解密操作。加密和解密过程是可逆的。本文还提到了一些相关的功能和使用方法,并给出了Python代码示例。 ... [详细]
  • 本文总结了使用不同方式生成 Dataframe 的方法,包括通过CSV文件、Excel文件、python dictionary、List of tuples和List of dictionary。同时介绍了一些注意事项,如使用绝对路径引入文件和安装xlrd包来读取Excel文件。 ... [详细]
  • pythonMatplotlib(二)
    Matplotlib+pandas作图一、对csv文件进行提取ruixi.csv对上述表格进行提取并做图画出图像二、对.xlsx进行提取:rui ... [详细]
  • 本文介绍了在Python3中如何使用选择文件对话框的格式打开和保存图片的方法。通过使用tkinter库中的filedialog模块的asksaveasfilename和askopenfilename函数,可以方便地选择要打开或保存的图片文件,并进行相关操作。具体的代码示例和操作步骤也被提供。 ... [详细]
  • 无损压缩算法专题——LZSS算法实现
    本文介绍了基于无损压缩算法专题的LZSS算法实现。通过Python和C两种语言的代码实现了对任意文件的压缩和解压功能。详细介绍了LZSS算法的原理和实现过程,以及代码中的注释。 ... [详细]
  • 本文介绍了计算机网络的定义和通信流程,包括客户端编译文件、二进制转换、三层路由设备等。同时,还介绍了计算机网络中常用的关键词,如MAC地址和IP地址。 ... [详细]
  • 基于dlib的人脸68特征点提取(眨眼张嘴检测)python版本
    文章目录引言开发环境和库流程设计张嘴和闭眼的检测引言(1)利用Dlib官方训练好的模型“shape_predictor_68_face_landmarks.dat”进行68个点标定 ... [详细]
  • 树莓派语音控制的配置方法和步骤
    本文介绍了在树莓派上实现语音控制的配置方法和步骤。首先感谢博主Eoman的帮助,文章参考了他的内容。树莓派的配置需要通过sudo raspi-config进行,然后使用Eoman的控制方法,即安装wiringPi库并编写控制引脚的脚本。具体的安装步骤和脚本编写方法在文章中详细介绍。 ... [详细]
  • 本文详细介绍了Python中正则表达式和re模块的使用方法。首先解释了转义符的作用,以及如何在字符串中包含特殊字符。然后介绍了re模块的功能和常用方法。通过学习本文,读者可以掌握正则表达式的基本概念和使用技巧,进一步提高Python编程能力。 ... [详细]
  • 本文介绍了一个Python函数same_set,用于判断两个相等长度的数组是否包含相同的元素。函数会忽略元素的顺序和重复次数,如果两个数组包含相同的元素,则返回1,否则返回0。文章还提供了函数的具体实现代码和样例输入输出。 ... [详细]
  • 如何优化Webpack打包后的代码分割
    本文介绍了如何通过优化Webpack的代码分割来减小打包后的文件大小。主要包括拆分业务逻辑代码和引入第三方包的代码、配置Webpack插件、异步代码的处理、代码分割重命名、配置vendors和cacheGroups等方面的内容。通过合理配置和优化,可以有效减小打包后的文件大小,提高应用的加载速度。 ... [详细]
  • tcpdump 4.5.1 crash 深入分析
    tcpdump 4.5.1 crash 深入分析 ... [详细]
  • 动量|收益率_基于MT策略的实战分析
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了基于MT策略的实战分析相关的知识,希望对你有一定的参考价值。基于MT策略的实战分析 ... [详细]
  • 数学建模入门python绘制频率直方图
    文章目录例题数据处理绘图操作调用演示例题数据处理将以下的数据保存到磁盘上17275169551696417165167471716216867165521696216865 ... [详细]
author-avatar
手机用户2502878113
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有