热门标签 | HotTags
当前位置:  开发笔记 > 开发工具 > 正文

使用OpenCV怎么实现Canny边缘检测

今天就跟大家聊聊有关使用OpenCV怎么实现Canny边缘检测,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据

今天就跟大家聊聊有关使用OpenCV怎么实现Canny边缘检测,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。


1. Canny 边缘检测理论

Canny 是一种常用的边缘检测算法. 其是在 1986 年 John F.Canny 提出的.
Canny 是一种 multi-stage 算法,分别如下:

具体流程:

  • 高斯滤波:平滑图像,消除噪声

  • 梯度和方向计算:利用Sobel算子计算每个像素点的梯度和方向

  • 非极大值抑制:消除边缘检测带来的杂散相应

  • 双阈值:检测真正和潜在的边缘

  • 抑制弱边缘:通过抑制弱边缘来完成边缘检测

1.1、高斯滤波

高斯滤波最重要的还是卷积核核,通常使用高斯平滑滤波器卷积降噪,这里以size=3的高斯内核为例:这里做了归一化处理(元素和为 1)

使用OpenCV怎么实现Canny边缘检测

高斯去噪其实就是一个低通滤波器,滤除高频噪声。

1.2、Sobel算子计算梯度和方向

计算方法:

使用OpenCV怎么实现Canny边缘检测

这里 使用OpenCV怎么实现Canny边缘检测是指水平方向的掩码模板,使用OpenCV怎么实现Canny边缘检测是指垂直方向的掩码模板。根据上面的模板可以计算出图像梯度幅值和方向。

使用OpenCV怎么实现Canny边缘检测

1.3、非极大值抑制(定位准确的边缘同时可缩小边缘线宽)

非极大值抑制是进行边缘检测的重要步骤,通俗的来说,就是获取局部的最大值,将非极大值所对应的灰度值设置为背景像素点。像素邻近区域满足梯度值的局部最优值判断为该像素的边缘,对非极大值相关信息进行抑制。利用这个准则可以剔除大部分的非边缘点。

简单的说呢?就是保留梯度大的像素点点,对于那些在边缘旁边的杂散点,梯度相对较小,利用非极大值抑制就可以很好的去除杂散点。

1.4、双阈值检测

这里的双阈值并不是说介于阈值之间的像素保留,外面的的去除。这里的阈值检测有所不同。

使用OpenCV怎么实现Canny边缘检测

分析:

  • 梯度大于maxVal的像素点保留,视为边缘

  • 梯度小于minVal的像素点弃用,不视为边缘

  • 梯度介于两者之间的,分情况判断:

  • 四周有包含大于maxVal的像素点,视为边缘

  • 四周没有大于maxVal的像素点,不视为边缘

根据上面的分析,我们可以得出来:A, D点位边界; B, C点不是边界。

注意:

具体这两个值怎么设置,我们就要分析两个值变化对图像的影响。

  • maxVal: 带来最明显的差异,增大maxVal无疑会导致原来的边界点可能会直接消失。但这种消失时是成片消失。

  • minVal: 增大minVal,会导致有些待定像素点被弃用,也就是靠近边界像素点的介于双阈值之间的被弃用。导致的现象就是边界出现破损,这种非成片消失。只是边界信息不完整。

下面以 video = cv2.Canny(img, 80, 250) 为例:分别增大minVal和maxVal。

增大minVal: (边界出现缺损)

使用OpenCV怎么实现Canny边缘检测

增大maxVal: (边界出现成片消失,边界信息完整)

使用OpenCV怎么实现Canny边缘检测

总结:

在实际应用中,观察梯度图像,如果边界信息缺损,那么适当的减小minVal;如果有不想要的区域出现,那么适当的增加MaxVal。

2. OpenCV 之 Canny 边缘检测

OpenCV 提供了 cv2.canny() 函数.

edge = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]])
  • 参数 Image - 输入图片,必须为单通道的灰度图

  • 参数 threshold1 和 threshold2 - 分别对应于阈值 minVal 和 maxVal

  • 参数 apertureSize - 用于计算图片提取的 Sobel kernel 尺寸. 默认为 3.

  • 参数 L2gradient - 指定计算梯度的等式. 当参数为 True 时,采用 1.2 中的梯度计算公式,其精度更高;否则采用的梯度计算公式为:使用OpenCV怎么实现Canny边缘检测

    带 minVal 和 maxVal 滑动条的使用:

    import numpy as np
    import cv2
     
    def nothing(x):
        pass
     
    img=cv2.imread('test.jpg',0)
     
    cv2.namedWindow('res')
    cv2.createTrackbar('min','res',0,25,nothing)
    cv2.createTrackbar('max','res',0,25,nothing)
    while(1):
        if cv2.waitKey(1) & 0xFF == 27:
            break
        maxVal=cv2.getTrackbarPos('max','res')
        minVal=cv2.getTrackbarPos('min','res')
        canny=cv2.Canny(img,10*minVal,10*maxVal)
        cv2.imshow('res',canny)
    cv2.destroyAllWindows()

    使用OpenCV怎么实现Canny边缘检测

    看完上述内容,你们对使用OpenCV怎么实现Canny边缘检测有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注编程笔记行业资讯频道,感谢大家的支持。


推荐阅读
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 本文详细介绍了如何使用 Yii2 的 GridView 组件在列表页面实现数据的直接编辑功能。通过具体的代码示例和步骤,帮助开发者快速掌握这一实用技巧。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
  • 苹果新专利或将引领无边框手机时代
    苹果公司最近公布了一项新的专利技术,该技术能够在设备屏幕中嵌入光线传感器,这标志着苹果在实现无边框手机设计上迈出了重要一步。这一创新将极大提升手机的屏占比,并可能为未来的iPhone带来革命性的变化。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 三星W799在2011年的表现堪称经典,以其独特的双屏设计和强大的功能引领了双模手机的潮流。本文详细介绍其配置、功能及锁屏设置。 ... [详细]
  • 深入理解 SQL 视图、存储过程与事务
    本文详细介绍了SQL中的视图、存储过程和事务的概念及应用。视图为用户提供了一种灵活的数据查询方式,存储过程则封装了复杂的SQL逻辑,而事务确保了数据库操作的完整性和一致性。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • c# – UWP:BrightnessOverride StartOverride逻辑 ... [详细]
  • 数据库内核开发入门 | 搭建研发环境的初步指南
    本课程将带你从零开始,逐步掌握数据库内核开发的基础知识和实践技能,重点介绍如何搭建OceanBase的开发环境。 ... [详细]
  • 本文深入探讨 MyBatis 中动态 SQL 的使用方法,包括 if/where、trim 自定义字符串截取规则、choose 分支选择、封装查询和修改条件的 where/set 标签、批量处理的 foreach 标签以及内置参数和 bind 的用法。 ... [详细]
  • 本文详细介绍了Java中org.eclipse.ui.forms.widgets.ExpandableComposite类的addExpansionListener()方法,并提供了多个实际代码示例,帮助开发者更好地理解和使用该方法。这些示例来源于多个知名开源项目,具有很高的参考价值。 ... [详细]
  • 使用 Azure Service Principal 和 Microsoft Graph API 获取 AAD 用户列表
    本文介绍了一段通用代码示例,该代码不仅能够操作 Azure Active Directory (AAD),还可以通过 Azure Service Principal 的授权访问和管理 Azure 订阅资源。Azure 的架构可以分为两个层级:AAD 和 Subscription。 ... [详细]
author-avatar
情之瞬
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有