热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python+OpenCV图像处理(十六)——轮廓发现

原标题:Python+OpenCV图像处理(十六)——轮廓发现简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果。

原标题:Python+OpenCV图像处理(十六)—— 轮廓发现

简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果。

代码如下:

import cv2 as cv
import numpy as文章来源地址28999.html np
def contours_demo(image):
dst
= cv.GaussianBlur(image, (3, 3), 0) #高斯模糊去噪
gray = cv.cvtColor(dst, cv.COLOR_RGB2GRAY)
ret, binary
= cv.threswww.yii666.comhold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU) #用大律法、全局自适应阈值方法进行图像二值化
cv.imshow("binary image", binary)
cloneTmage, contours, heriachy
= cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for i, contour in enumerate(contours):
cv.drawContours(image, contours, i, (0, 0,
255), 2)
print(i)
cv.imshow(
"contours", image)
for i, contour in enumerate(contours):
cv.drawContours(image, contours, i, (0, 0,
255), -1)
cv.imshow(
"pcontours", image)
src
= cv.imread('E:/imageload/coins.jpg')
cv.namedWindow(
'input_image', cv.WINDOW_NORMAL) #设置为WINDOW_NORMAL可以任意缩放
cv.imshow('input_image', src)
contours_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()

运行结果:

注意:

1.Opencv发现轮廓的函数原型为:findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> image, contours, hierarchy

image参数表示8位单通道图像矩阵,可以是灰度图,但更常用的是二值图像,一般是经过Canny、拉普拉斯等边缘检测算子处理过的二值图像。

mode参数表示轮廓检索模式:

①CV_RETR_EXTERNAL:只检测最外围轮廓,包含在外围轮廓内的内围轮廓被忽略。

②CV_RETR_LIST:检测所有的轮廓,包括内围、外围轮廓,但是检测到的轮廓不建立等级关系,彼此之间独立,没有等级关系,这就意味着这个检索模式下不存在父轮廓或内嵌轮廓。

③CV_RETR_CCOMP:检测所有的轮廓,但所有轮廓只建立两个等级关系,外围为顶层,若外围内的内围轮廓还包含了其他的轮廓信息,则内围内的所有轮廓均归属于顶层。

④CV_RETR_TREE:检测所有轮廓,所有轮廓建立一个等级树结构,外层轮廓包含内层轮廓,内层轮廓还可以继续包含内嵌轮廓。

method参数表示轮廓的近似方法:

①CV_CHAIN_APPROX_NONE 存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max (abs (x1 - x2), abs(y2 - y1) == 1。

②CV_CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息。

③CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法。

contours参数是一个list,表示存储的每个轮廓的点集合。

hierarchy参数是一个list,list中元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0] ~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。

offset参数表示每个轮廓点移动的可选偏移量。

2.Opencv绘制轮廓的函数原型为:drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]]) -> image

imgae参数表示目标图像。

contours参数表示所有输入轮廓。

contourIdx参数表示绘制轮廓list中的哪条轮廓,如果是负数,则绘制所有轮廓。

color参数表示轮廓的www.yii666.com颜色。

thickness参数表示绘制的轮廓线条粗细,如果是负数,则绘制轮廓内部。

lineType参数表示线型。

hierarchy参数表示有关层次结构的可选信息。

maxLevel参数表示绘制轮廓的最大级别。 如果为0,则仅绘制指定的轮廓。 如果为1,则该函文章来源地址28999.html数绘制轮廓和所有嵌套轮廓。 如果为2,则该函数绘制轮廓,所有嵌套轮廓,所有嵌套到嵌套的文章来源站点https://www.yii666.com/轮廓,等等。 仅当有可用的层次结构时才考虑此参数。

offset参数表示可选的轮廓偏移参数,该参数可按指定的方式移动所有绘制的轮廓。

来源于:Python+OpenCV图像处理(十六)—— 轮廓发现


推荐阅读
  • 兆芯X86 CPU架构的演进与现状(国产CPU系列)
    本文详细介绍了兆芯X86 CPU架构的发展历程,从公司成立背景到关键技术授权,再到具体芯片架构的演进,全面解析了兆芯在国产CPU领域的贡献与挑战。 ... [详细]
  • C#实现文件的压缩与解压
    2019独角兽企业重金招聘Python工程师标准一、准备工作1、下载ICSharpCode.SharpZipLib.dll文件2、项目中引用这个dll二、文件压缩与解压共用类 ... [详细]
  • 用阿里云的免费 SSL 证书让网站从 HTTP 换成 HTTPS
    HTTP协议是不加密传输数据的,也就是用户跟你的网站之间传递数据有可能在途中被截获,破解传递的真实内容,所以使用不加密的HTTP的网站是不 ... [详细]
  • IOS Run loop详解
    为什么80%的码农都做不了架构师?转自http:blog.csdn.netztp800201articledetails9240913感谢作者分享Objecti ... [详细]
  • CentOS 7 中 iptables 过滤表实例与 NAT 表应用详解
    在 CentOS 7 系统中,iptables 的过滤表和 NAT 表具有重要的应用价值。本文通过具体实例详细介绍了如何配置 iptables 的过滤表,包括编写脚本文件 `/usr/local/sbin/iptables.sh`,并使用 `iptables -F` 清空现有规则。此外,还深入探讨了 NAT 表的配置方法,帮助读者更好地理解和应用这些网络防火墙技术。 ... [详细]
  • 在CentOS 7环境中安装配置Redis及使用Redis Desktop Manager连接时的注意事项与技巧
    在 CentOS 7 环境中安装和配置 Redis 时,需要注意一些关键步骤和最佳实践。本文详细介绍了从安装 Redis 到配置其基本参数的全过程,并提供了使用 Redis Desktop Manager 连接 Redis 服务器的技巧和注意事项。此外,还探讨了如何优化性能和确保数据安全,帮助用户在生产环境中高效地管理和使用 Redis。 ... [详细]
  • 题目《BZOJ2654: Tree》的时间限制为30秒,内存限制为512MB。该问题通过结合二分查找和Kruskal算法,提供了一种高效的优化解决方案。具体而言,利用二分查找缩小解的范围,再通过Kruskal算法构建最小生成树,从而在复杂度上实现了显著的优化。此方法不仅提高了算法的效率,还确保了在大规模数据集上的稳定性能。 ... [详细]
  • Manacher算法详解:寻找最长回文子串
    本文将详细介绍Manacher算法,该算法用于高效地找到字符串中的最长回文子串。通过在字符间插入特殊符号,Manacher算法能够同时处理奇数和偶数长度的回文子串问题。 ... [详细]
  • Nvidia Ansel 工具为 PC 玩家提供了便捷的高精度图像采集和分享功能。本文介绍了如何将 Ansel 插件集成到虚幻引擎 4 (UE4) 游戏中,并详细说明了其主要功能和系统要求。 ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
  • 本文介绍了如何在 Spring 3.0.5 中使用 JdbcTemplate 插入数据并获取 MySQL 表中的自增主键。 ... [详细]
  • 本文介绍了几种常用的图像相似度对比方法,包括直方图方法、图像模板匹配、PSNR峰值信噪比、SSIM结构相似性和感知哈希算法。每种方法都有其优缺点,适用于不同的应用场景。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 结城浩(1963年7月出生),日本资深程序员和技术作家,居住在东京武藏野市。他开发了著名的YukiWiki软件,并在杂志上发表了大量程序入门文章和技术翻译作品。结城浩著有30多本关于编程和数学的书籍,其中许多被翻译成英文和韩文。 ... [详细]
  • 解决Parallels Desktop错误15265的方法
    本文详细介绍了在使用Parallels Desktop时遇到错误15265的多种解决方案,包括检查网络连接、关闭代理服务器和修改主机文件等步骤。 ... [详细]
author-avatar
食品质量的安全
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有