热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

PyTorchCookbook(常用代码段集锦)

点击上方“小白学视觉”,选择加星标或“置顶”重磅干货,第一时间送达来自|知乎作者|张皓链接|https:zhuanlan.zhihu.comp592

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达704476ba787a1ac3e605f4335001ae0e.png

来自 | 知乎   作者 | 张皓

链接 | https://zhuanlan.zhihu.com/p/59205847

本文仅作学术分享,如有侵权,请联系后台删文处理

619da27922cc8b2389ff31ab31715ecf.png

本文代码基于PyTorch 1.0版本,需要用到以下包

import collections
import os
import shutil
import tqdmimport numpy as np
import PIL.Image
import torch
import torchvision


1. 基础配置

检查PyTorch版本

torch.__version__ # PyTorch version
torch.version.cuda # Corresponding CUDA version
torch.backends.cudnn.version() # Corresponding cuDNN version
torch.cuda.get_device_name(0) # GPU type

更新PyTorch

PyTorch将被安装在anaconda3/lib/python3.7/site-packages/torch/目录下。

conda update pytorch torchvision -c pytorch

固定随机种子

torch.manual_seed(0)
torch.cuda.manual_seed_all(0)

指定程序运行在特定GPU卡上

在命令行指定环境变量

CUDA_VISIBLE_DEVICES=0,1 python train.py

或在代码中指定

os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'

判断是否有CUDA支持

torch.cuda.is_available()

设置为cuDNN benchmark模式

Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异。

torch.backends.cudnn.benchmark = True

如果想要避免这种结果波动,设置

torch.backends.cudnn.deterministic = True

清除GPU存储

有时Control-C中止运行后GPU存储没有及时释放,需要手动清空。在PyTorch内部可以

torch.cuda.empty_cache()

或在命令行可以先使用ps找到程序的PID,再使用kill结束该进程

ps aux | grep python
kill -9 [pid]

或者直接重置没有被清空的GPU

nvidia-smi --gpu-reset -i [gpu_id]

2. 张量处理

张量基本信息

tensor.type() # Data type
tensor.size() # Shape of the tensor. It is a subclass of Python tuple
tensor.dim() # Number of dimensions.

数据类型转换

# Set default tensor type. Float in PyTorch is much faster than double.
torch.set_default_tensor_type(torch.FloatTensor)# Type convertions.
tensor = tensor.cuda()
tensor = tensor.cpu()
tensor = tensor.float()
tensor = tensor.long()

torch.Tensor与np.ndarray转换

# torch.Tensor -> np.ndarray.
ndarray = tensor.cpu().numpy()# np.ndarray -> torch.Tensor.
tensor = torch.from_numpy(ndarray).float()
tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride

torch.Tensor与PIL.Image转换

PyTorch中的张量默认采用N×D×H×W的顺序,并且数据范围在[0, 1],需要进行转置和规范化。

# torch.Tensor -> PIL.Image.
image = PIL.Image.fromarray(torch.clamp(tensor * 255, min=0, max=255).byte().permute(1, 2, 0).cpu().numpy())
image = torchvision.transforms.functional.to_pil_image(tensor) # Equivalently way# PIL.Image -> torch.Tensor.
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2, 0, 1).float() / 255
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way

np.ndarray与PIL.Image转换

# np.ndarray -> PIL.Image.
image = PIL.Image.fromarray(ndarray.astypde(np.uint8))# PIL.Image -> np.ndarray.
ndarray = np.asarray(PIL.Image.open(path))

从只包含一个元素的张量中提取值

这在训练时统计loss的变化过程中特别有用。否则这将累积计算图,使GPU存储占用量越来越大。

value = tensor.item()

张量形变

张量形变常常需要用于将卷积层特征输入全连接层的情形。相比torch.view,torch.reshape可以自动处理输入张量不连续的情况。

tensor = torch.reshape(tensor, shape)

打乱顺序

tensor = tensor[torch.randperm(tensor.size(0))] # Shuffle the first dimension

水平翻转

PyTorch不支持tensor[::-1]这样的负步长操作,水平翻转可以用张量索引实现。

# Assume tensor has shape N*D*H*W.
tensor = tensor[:, :, :, torch.arange(tensor.size(3) - 1, -1, -1).long()]

复制张量

有三种复制的方式,对应不同的需求。

# Operation | New/Shared memory | Still in computation graph |
tensor.clone() # | New | Yes |
tensor.detach() # | Shared | No |
tensor.detach.clone()() # | New | No |

拼接张量

注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,而torch.stack会新增一维。例如当参数是3个10×5的张量,torch.cat的结果是30×5的张量,而torch.stack的结果是3×10×5的张量。

tensor = torch.cat(list_of_tensors, dim=0)
tensor = torch.stack(list_of_tensors, dim=0)

将整数标记转换成独热(one-hot)编码

PyTorch中的标记默认从0开始。

N = tensor.size(0)
one_hot = torch.zeros(N, num_classes).long()
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())

得到非零/零元素

torch.nonzero(tensor) # Index of non-zero elements
torch.nonzero(tensor == 0) # Index of zero elements
torch.nonzero(tensor).size(0) # Number of non-zero elements
torch.nonzero(tensor == 0).size(0) # Number of zero elements

判断两个张量相等

torch.allclose(tensor1, tensor2) # float tensor
torch.equal(tensor1, tensor2) # int tensor

张量扩展

# Expand tensor of shape 64*512 to shape 64*512*7*7.
torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)

矩阵乘法

# Matrix multiplication: (m*n) * (n*p) -> (m*p).
result = torch.mm(tensor1, tensor2)# Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p).
result = torch.bmm(tensor1, tensor2)# Element-wise multiplication.
result = tensor1 * tensor2

计算两组数据之间的两两欧式距离

# X1 is of shape m*d, X2 is of shape n*d.
dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))


3. 模型定义

卷积层

最常用的卷积层配置是

conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True)
conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True)

如果卷积层配置比较复杂,不方便计算输出大小时,可以利用如下可视化工具辅助

Convolution Visualizer

https://ezyang.github.io/convolution-visualizer/index.html

GAP(Global average pooling)层

gap = torch.nn.AdaptiveAvgPool2d(output_size=1)

双线性汇合(bilinear pooling)[1]

X = torch.reshape(N, D, H * W) # Assume X has shape N*D*H*W
X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W) # Bilinear pooling
assert X.size() == (N, D, D)
X = torch.reshape(X, (N, D * D))
X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5) # Signed-sqrt normalization
X = torch.nn.functional.normalize(X) # L2 normalization

多卡同步BN(Batch normalization)

当使用torch.nn.DataParallel将代码运行在多张GPU卡上时,PyTorch的BN层默认操作是各卡上数据独立地计算均值和标准差,同步BN使用所有卡上的数据一起计算BN层的均值和标准差,缓解了当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是在目标检测等任务中一个有效的提升性能的技巧。

Synchronized-BatchNorm-PyTorch

https://github.com/vacancy/Synchronized-BatchNorm-PyTorch

现在PyTorch官方已经支持同步BN操作

sync_bn = torch.nn.SyncBatchNorm(num_features, eps=1e-05, momentum=0.1, affine=True,track_running_stats=True)

将已有网络的所有BN层改为同步BN层

def convertBNtoSyncBN(module, process_group=None):'''Recursively replace all BN layers to SyncBN layer.Args:module[torch.nn.Module]. Network'''if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum,module.affine, module.track_running_stats, process_group)sync_bn.running_mean = module.running_meansync_bn.running_var = module.running_varif module.affine:sync_bn.weight = module.weight.clone().detach()sync_bn.bias = module.bias.clone().detach()return sync_bnelse:for name, child_module in module.named_children():setattr(module, name) = convert_syncbn_model(child_module, process_group=process_group))return module

类似BN滑动平均

如果要实现类似BN滑动平均的操作,在forward函数中要使用原地(inplace)操作给滑动平均赋值。

class BN(torch.nn.Module)def __init__(self):...self.register_buffer('running_mean', torch.zeros(num_features))def forward(self, X):...self.running_mean += momentum * (current - self.running_mean)

计算模型整体参数量

num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())

类似Keras的model.summary()输出模型信息

pytorch-summary

https://github.com/sksq96/pytorch-summary

模型权值初始化

注意model.modules()和model.children()的区别:model.modules()会迭代地遍历模型的所有子层,而model.children()只会遍历模型下的一层。

# Common practise for initialization.
for layer in model.modules():if isinstance(layer, torch.nn.Conv2d):torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out',nonlinearity='relu')if layer.bias is not None:torch.nn.init.constant_(layer.bias, val=0.0)elif isinstance(layer, torch.nn.BatchNorm2d):torch.nn.init.constant_(layer.weight, val=1.0)torch.nn.init.constant_(layer.bias, val=0.0)elif isinstance(layer, torch.nn.Linear):torch.nn.init.xavier_normal_(layer.weight)if layer.bias is not None:torch.nn.init.constant_(layer.bias, val=0.0)# Initialization with given tensor.
layer.weight = torch.nn.Parameter(tensor)

部分层使用预训练模型

注意如果保存的模型是torch.nn.DataParallel,则当前的模型也需要是torch.nn.DataParallel。torch.nn.DataParallel(model).module == model。

model.load_state_dict(torch.load('model,pth'), strict=False)

将在GPU保存的模型加载到CPU

model.load_state_dict(torch.load('model,pth', map_location='cpu'))


4. 数据准备、特征提取与微调

图像分块打散(image shuffle)/区域混淆机制(region confusion mechanism,RCM)[2]

# X is torch.Tensor of size N*D*H*W.
# Shuffle rows
Q = (torch.unsqueeze(torch.arange(num_blocks), dim=1) * torch.ones(1, num_blocks).long()+ torch.randint(low=-neighbour, high=neighbour, size=(num_blocks, num_blocks)))
Q = torch.argsort(Q, dim=0)
assert Q.size() == (num_blocks, num_blocks)X = [torch.chunk(row, chunks=num_blocks, dim=2)for row in torch.chunk(X, chunks=num_blocks, dim=1)]
X = [[X[Q[i, j].item()][j] for j in range(num_blocks)]for i in range(num_blocks)]# Shulle columns.
Q = (torch.ones(num_blocks, 1).long() * torch.unsqueeze(torch.arange(num_blocks), dim=0)+ torch.randint(low=-neighbour, high=neighbour, size=(num_blocks, num_blocks)))
Q = torch.argsort(Q, dim=1)
assert Q.size() == (num_blocks, num_blocks)
X = [[X[i][Q[i, j].item()] for j in range(num_blocks)]for i in range(num_blocks)]Y = torch.cat([torch.cat(row, dim=2) for row in X], dim=1)

得到视频数据基本信息

import cv2
video = cv2.VideoCapture(mp4_path)
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(video.get(cv2.CAP_PROP_FPS))
video.release()

TSN每段(segment)采样一帧视频[3]

K = self._num_segments
if is_train:if num_frames > K:# Random index for each segment.frame_indices = torch.randint(high=num_frames // K, size=(K,), dtype=torch.long)frame_indices += num_frames // K * torch.arange(K)else:frame_indices = torch.randint(high=num_frames, size=(K - num_frames,), dtype=torch.long)frame_indices = torch.sort(torch.cat((torch.arange(num_frames), frame_indices)))[0]
else:if num_frames > K:# Middle index for each segment.frame_indices = num_frames / K // 2frame_indices += num_frames // K * torch.arange(K)else:frame_indices = torch.sort(torch.cat((torch.arange(num_frames), torch.arange(K - num_frames))))[0]
assert frame_indices.size() == (K,)
return [frame_indices[i] for i in range(K)]

提取ImageNet预训练模型某层的卷积特征

# VGG-16 relu5-3 feature.
model = torchvision.models.vgg16(pretrained=True).features[:-1]
# VGG-16 pool5 feature.
model = torchvision.models.vgg16(pretrained=True).features
# VGG-16 fc7 feature.
model = torchvision.models.vgg16(pretrained=True)
model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
# ResNet GAP feature.
model = torchvision.models.resnet18(pretrained=True)
model = torch.nn.Sequential(collections.OrderedDict(list(model.named_children())[:-1]))with torch.no_grad():model.eval()conv_representation = model(image)

提取ImageNet预训练模型多层的卷积特征

class FeatureExtractor(torch.nn.Module):"""Helper class to extract several convolution features from the givenpre-trained model.Attributes:_model, torch.nn.Module._layers_to_extract, list or setExample:>>> model = torchvision.models.resnet152(pretrained=True)>>> model = torch.nn.Sequential(collections.OrderedDict(list(model.named_children())[:-1]))>>> conv_representation = FeatureExtractor(pretrained_model=model,layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)"""def __init__(self, pretrained_model, layers_to_extract):torch.nn.Module.__init__(self)self._model = pretrained_modelself._model.eval()self._layers_to_extract = set(layers_to_extract)def forward(self, x):with torch.no_grad():conv_representation = []for name, layer in self._model.named_children():x = layer(x)if name in self._layers_to_extract:conv_representation.append(x)return conv_representation

其他预训练模型

pretrained-models.pytorch

https://github.com/Cadene/pretrained-models.pytorch

微调全连接层

model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():param.requires_grad = False
model.fc = nn.Linear(512, 100) # Replace the last fc layer
optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)

以较大学习率微调全连接层,较小学习率微调卷积层

model = torchvision.models.resnet18(pretrained=True)
finetuned_parameters = list(map(id, model.fc.parameters()))
conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
parameters = [{'params': conv_parameters, 'lr': 1e-3},{'params': model.fc.parameters()}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)


5. 模型训练

常用训练和验证数据预处理

其中ToTensor操作会将PIL.Image或形状为H×W×D,数值范围为[0, 255]的np.ndarray转换为形状为D×H×W,数值范围为[0.0, 1.0]的torch.Tensor。

train_transform = torchvision.transforms.Compose([torchvision.transforms.RandomResizedCrop(size=224,scale=(0.08, 1.0)),torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),std=(0.229, 0.224, 0.225)),])val_transform = torchvision.transforms.Compose([torchvision.transforms.Resize(256),torchvision.transforms.CenterCrop(224),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),std=(0.229, 0.224, 0.225)),
])

训练基本代码框架

for t in epoch(80):for images, labels in tqdm.tqdm(train_loader, desc='Epoch %3d' % (t + 1)):images, labels = images.cuda(), labels.cuda()scores = model(images)loss = loss_function(scores, labels)optimizer.zero_grad()loss.backward()optimizer.step()

标记平滑(label smoothing)[4]

for images, labels in train_loader:images, labels = images.cuda(), labels.cuda()N = labels.size(0)# C is the number of classes.smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)score = model(images)log_prob = torch.nn.functional.log_softmax(score, dim=1)loss = -torch.sum(log_prob * smoothed_labels) / Noptimizer.zero_grad()loss.backward()optimizer.step()

Mixup[5]

beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
for images, labels in train_loader:images, labels = images.cuda(), labels.cuda()# Mixup images.lambda_ = beta_distribution.sample([]).item()index = torch.randperm(images.size(0)).cuda()mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]# Mixup loss.scores = model(mixed_images)loss = (lambda_ * loss_function(scores, labels)+ (1 - lambda_) * loss_function(scores, labels[index]))optimizer.zero_grad()loss.backward()optimizer.step()

L1正则化

l1_regularization = torch.nn.L1Loss(reduction='sum')
loss = ... # Standard cross-entropy loss
for param in model.parameters():loss += lambda_ * torch.sum(torch.abs(param))
loss.backward()

不对偏置项进行L2正则化/权值衰减(weight decay)

bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
parameters = [{'parameters': bias_list, 'weight_decay': 0},{'parameters': others_list}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

梯度裁剪(gradient clipping)

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)

计算Softmax输出的准确率

score = model(images)
prediction = torch.argmax(score, dim=1)
num_correct = torch.sum(prediction == labels).item()
accuruacy = num_correct / labels.size(0)

可视化模型前馈的计算图

pytorchviz

https://github.com/szagoruyko/pytorchviz

可视化学习曲线

有Facebook自己开发的Visdom和Tensorboard(仍处于实验阶段)两个选择。

facebookresearch/visdom

https://github.com/facebookresearch/visdom

Tensorboard

https://pytorch.org/docs/stable/tensorboard.html

# Example using Visdom.
vis = visdom.Visdom(env='Learning curve', use_incoming_socket=False)
assert self._visdom.check_connection()
self._visdom.close()
options = collections.namedtuple('Options', ['loss', 'acc', 'lr'])(loss={'xlabel': 'Epoch', 'ylabel': 'Loss', 'showlegend': True},acc={'xlabel': 'Epoch', 'ylabel': 'Accuracy', 'showlegend': True},lr={'xlabel': 'Epoch', 'ylabel': 'Learning rate', 'showlegend': True})for t in epoch(80):tran(...)val(...)vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_loss]),name='train', win='Loss', update='append', opts=options.loss)vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_loss]),name='val', win='Loss', update='append', opts=options.loss)vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_acc]),name='train', win='Accuracy', update='append', opts=options.acc)vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_acc]),name='val', win='Accuracy', update='append', opts=options.acc)vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([lr]),win='Learning rate', update='append', opts=options.lr)

得到当前学习率

# If there is one global learning rate (which is the common case).
lr = next(iter(optimizer.param_groups))['lr']# If there are multiple learning rates for different layers.
all_lr = []
for param_group in optimizer.param_groups:all_lr.append(param_group['lr'])

学习率衰减

# Reduce learning rate when validation accuarcy plateau.
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
for t in range(0, 80):train(...); val(...)scheduler.step(val_acc)# Cosine annealing learning rate.
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
# Reduce learning rate by 10 at given epochs.
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
for t in range(0, 80):scheduler.step()train(...); val(...)# Learning rate warmup by 10 epochs.
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
for t in range(0, 10):scheduler.step()train(...); val(...)

保存与加载断点

注意为了能够恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数。

# Save checkpoint.
is_best = current_acc > best_acc
best_acc = max(best_acc, current_acc)
checkpoint = {'best_acc': best_acc,'epoch': t + 1,'model': model.state_dict(),'optimizer': optimizer.state_dict(),
}
model_path = os.path.join('model', 'checkpoint.pth.tar')
torch.save(checkpoint, model_path)
if is_best:shutil.copy('checkpoint.pth.tar', model_path)# Load checkpoint.
if resume:model_path = os.path.join('model', 'checkpoint.pth.tar')assert os.path.isfile(model_path)checkpoint = torch.load(model_path)best_acc = checkpoint['best_acc']start_epoch = checkpoint['epoch']model.load_state_dict(checkpoint['model'])optimizer.load_state_dict(checkpoint['optimizer'])print('Load checkpoint at epoch %d.' % start_epoch)

计算准确率、查准率(precision)、查全率(recall)

# data['label'] and data['prediction'] are groundtruth label and prediction
# for each image, respectively.
accuracy = np.mean(data['label'] == data['prediction']) * 100# Compute recision and recall for each class.
for c in range(len(num_classes)):tp = np.dot((data['label'] == c).astype(int),(data['prediction'] == c).astype(int))tp_fp = np.sum(data['prediction'] == c)tp_fn = np.sum(data['label'] == c)precision = tp / tp_fp * 100recall = tp / tp_fn * 100


6. 模型测试

计算每个类别的查准率(precision)、查全率(recall)、F1和总体指标

import sklearn.metricsall_label = []
all_prediction = []
for images, labels in tqdm.tqdm(data_loader):# Data.images, labels = images.cuda(), labels.cuda()# Forward pass.score = model(images)# Save label and predictions.prediction = torch.argmax(score, dim=1)all_label.append(labels.cpu().numpy())all_prediction.append(prediction.cpu().numpy())# Compute RP and confusion matrix.
all_label = np.concatenate(all_label)
assert len(all_label.shape) == 1
all_prediction = np.concatenate(all_prediction)
assert all_label.shape == all_prediction.shape
micro_p, micro_r, micro_f1, _ = sklearn.metrics.precision_recall_fscore_support(all_label, all_prediction, average='micro', labels=range(num_classes))
class_p, class_r, class_f1, class_occurence = sklearn.metrics.precision_recall_fscore_support(all_label, all_prediction, average=None, labels=range(num_classes))
# Ci,j = #{y=i and hat_y=j}
confusion_mat = sklearn.metrics.confusion_matrix(all_label, all_prediction, labels=range(num_classes))
assert confusion_mat.shape == (num_classes, num_classes)

将各类结果写入电子表格

import csv# Write results onto disk.
with open(os.path.join(path, filename), 'wt', encoding='utf-8') as f:f = csv.writer(f)f.writerow(['Class', 'Label', '# occurence', 'Precision', 'Recall', 'F1','Confused class 1', 'Confused class 2', 'Confused class 3','Confused 4', 'Confused class 5'])for c in range(num_classes):index = np.argsort(confusion_mat[:, c])[::-1][:5]f.writerow([label2class[c], c, class_occurence[c], '%4.3f' % class_p[c],'%4.3f' % class_r[c], '%4.3f' % class_f1[c],'%s:%d' % (label2class[index[0]], confusion_mat[index[0], c]),'%s:%d' % (label2class[index[1]], confusion_mat[index[1], c]),'%s:%d' % (label2class[index[2]], confusion_mat[index[2], c]),'%s:%d' % (label2class[index[3]], confusion_mat[index[3], c]),'%s:%d' % (label2class[index[4]], confusion_mat[index[4], c])])f.writerow(['All', '', np.sum(class_occurence), micro_p, micro_r, micro_f1,'', '', '', '', ''])


7. PyTorch其他注意事项

模型定义

  • 建议有参数的层和汇合(pooling)层使用torch.nn模块定义,激活函数直接使用torch.nn.functional。torch.nn模块和torch.nn.functional的区别在于,torch.nn模块在计算时底层调用了torch.nn.functional,但torch.nn模块包括该层参数,还可以应对训练和测试两种网络状态。使用torch.nn.functional时要注意网络状态,如

def forward(self, x):...x = torch.nn.functional.dropout(x, p=0.5, training=self.training)

  • model(x)前用model.train()和model.eval()切换网络状态。

  • 不需要计算梯度的代码块用with torch.no_grad()包含起来。model.eval()和torch.no_grad()的区别在于,model.eval()是将网络切换为测试状态,例如BN和随机失活(dropout)在训练和测试阶段使用不同的计算方法。torch.no_grad()是关闭PyTorch张量的自动求导机制,以减少存储使用和加速计算,得到的结果无法进行loss.backward()。

  • torch.nn.CrossEntropyLoss的输入不需要经过Softmax。torch.nn.CrossEntropyLoss等价于torch.nn.functional.log_softmax + torch.nn.NLLLoss。

  • loss.backward()前用optimizer.zero_grad()清除累积梯度。optimizer.zero_grad()和model.zero_grad()效果一样。

PyTorch性能与调试

  • torch.utils.data.DataLoader中尽量设置pin_memory=True,对特别小的数据集如MNIST设置pin_memory=False反而更快一些。num_workers的设置需要在实验中找到最快的取值。

  • 用del及时删除不用的中间变量,节约GPU存储。

  • 使用inplace操作可节约GPU存储,如

x = torch.nn.functional.relu(x, inplace=True)

此外,还可以通过torch.utils.checkpoint前向传播时只保留一部分中间结果来节约GPU存储使用,在反向传播时需要的内容从最近中间结果中计算得到。

  • 减少CPU和GPU之间的数据传输。例如如果你想知道一个epoch中每个mini-batch的loss和准确率,先将它们累积在GPU中等一个epoch结束之后一起传输回CPU会比每个mini-batch都进行一次GPU到CPU的传输更快。

  • 使用半精度浮点数half()会有一定的速度提升,具体效率依赖于GPU型号。需要小心数值精度过低带来的稳定性问题。

  • 时常使用assert tensor.size() == (N, D, H, W)作为调试手段,确保张量维度和你设想中一致。

  • 除了标记y外,尽量少使用一维张量,使用n*1的二维张量代替,可以避免一些意想不到的一维张量计算结果。

  • 统计代码各部分耗时

with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:...
print(profile)

或者在命令行运行

python -m torch.utils.bottleneck main.py


参考资料

  • PyTorch官方代码:pytorch/examples

  • PyTorch论坛:PyTorch Forums

  • PyTorch文档:pytorch.org/docs/stable

  • 其他基于PyTorch的公开实现代码,无法一一列举

参考

  1. ^T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN models for fine-grained visual recognition. In ICCV, 2015.

  2. ^Y. Chen, Y. Bai, W. Zhang, and T. Mei. Destruction and construction learning for fine-grained image recognition. In CVPR, 2019.

  3. ^L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. V. Gool. Temporal segment networks: Towards good practices for deep action recognition. In ECCV, 2016.

  4. ^C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna: Rethinking the Inception architecture for computer vision. In CVPR, 2016.

  5. ^H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. In ICLR, 2018.

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

9571a517f7ff4fc3157ee56cd3f46988.png

4035bfe7b1d6f4446d57dc000133c830.png



推荐阅读
  • 在Docker中,将主机目录挂载到容器中作为volume使用时,常常会遇到文件权限问题。这是因为容器内外的UID不同所导致的。本文介绍了解决这个问题的方法,包括使用gosu和suexec工具以及在Dockerfile中配置volume的权限。通过这些方法,可以避免在使用Docker时出现无写权限的情况。 ... [详细]
  • 阿,里,云,物,联网,net,core,客户端,czgl,aliiotclient, ... [详细]
  • 本文介绍了Android 7的学习笔记总结,包括最新的移动架构视频、大厂安卓面试真题和项目实战源码讲义。同时还分享了开源的完整内容,并提醒读者在使用FileProvider适配时要注意不同模块的AndroidManfiest.xml中配置的xml文件名必须不同,否则会出现问题。 ... [详细]
  • 使用Ubuntu中的Python获取浏览器历史记录原文: ... [详细]
  • eclipse学习(第三章:ssh中的Hibernate)——11.Hibernate的缓存(2级缓存,get和load)
    本文介绍了eclipse学习中的第三章内容,主要讲解了ssh中的Hibernate的缓存,包括2级缓存和get方法、load方法的区别。文章还涉及了项目实践和相关知识点的讲解。 ... [详细]
  • 本文介绍了PhysioNet网站提供的生理信号处理工具箱WFDB Toolbox for Matlab的安装和使用方法。通过下载并添加到Matlab路径中或直接在Matlab中输入相关内容,即可完成安装。该工具箱提供了一系列函数,可以方便地处理生理信号数据。详细的安装和使用方法可以参考本文内容。 ... [详细]
  • Android系统移植与调试之如何修改Android设备状态条上音量加减键在横竖屏切换的时候的显示于隐藏
    本文介绍了如何修改Android设备状态条上音量加减键在横竖屏切换时的显示与隐藏。通过修改系统文件system_bar.xml实现了该功能,并分享了解决思路和经验。 ... [详细]
  • Go Cobra命令行工具入门教程
    本文介绍了Go语言实现的命令行工具Cobra的基本概念、安装方法和入门实践。Cobra被广泛应用于各种项目中,如Kubernetes、Hugo和Github CLI等。通过使用Cobra,我们可以快速创建命令行工具,适用于写测试脚本和各种服务的Admin CLI。文章还通过一个简单的demo演示了Cobra的使用方法。 ... [详细]
  • 本文讨论了在openwrt-17.01版本中,mt7628设备上初始化启动时eth0的mac地址总是随机生成的问题。每次随机生成的eth0的mac地址都会写到/sys/class/net/eth0/address目录下,而openwrt-17.01原版的SDK会根据随机生成的eth0的mac地址再生成eth0.1、eth0.2等,生成后的mac地址会保存在/etc/config/network下。 ... [详细]
  • r2dbc配置多数据源
    R2dbc配置多数据源问题根据官网配置r2dbc连接mysql多数据源所遇到的问题pom配置可以参考官网,不过我这样配置会报错我并没有这样配置将以下内容添加到pom.xml文件d ... [详细]
  • 本文介绍了深入浅出Linux设备驱动编程的重要性,以及两种加载和删除Linux内核模块的方法。通过一个内核模块的例子,展示了模块的编译和加载过程,并讨论了模块对内核大小的控制。深入理解Linux设备驱动编程对于开发者来说非常重要。 ... [详细]
  • CEPH LIO iSCSI Gateway及其使用参考文档
    本文介绍了CEPH LIO iSCSI Gateway以及使用该网关的参考文档,包括Ceph Block Device、CEPH ISCSI GATEWAY、USING AN ISCSI GATEWAY等。同时提供了多个参考链接,详细介绍了CEPH LIO iSCSI Gateway的配置和使用方法。 ... [详细]
  • 在Oracle11g以前版本中的的DataGuard物理备用数据库,可以以只读的方式打开数据库,但此时MediaRecovery利用日志进行数据同步的过 ... [详细]
  • Android日历提醒软件开源项目分享及使用教程
    本文介绍了一款名为Android日历提醒软件的开源项目,作者分享了该项目的代码和使用教程,并提供了GitHub项目地址。文章详细介绍了该软件的主界面风格、日程信息的分类查看功能,以及添加日程提醒和查看详情的界面。同时,作者还提醒了读者在使用过程中可能遇到的Android6.0权限问题,并提供了解决方法。 ... [详细]
  • 关键词:Golang, Cookie, 跟踪位置, net/http/cookiejar, package main, golang.org/x/net/publicsuffix, io/ioutil, log, net/http, net/http/cookiejar ... [详细]
author-avatar
王家刚163034
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有