通过真实的实战案例(本文将介绍两个图片多分类问题),我们可以高效地将PyTorch入门知识串起来,有助于加深理解、为后续的进阶学习打好基础。1.FashionMNIST时装分类Fa
通过真实的实战案例(本文将介绍两个图片多分类问题),我们可以高效地将 PyTorch 入门知识串起来,有助于加深理解、为后续的进阶学习打好基础。
1. FashionMNIST时装分类
FashionMNIST数据集 包含已经预先划分好的训练集和测试集,其中训练集共60,000张图像,测试集共10,000张图像。每张图像均为单通道黑白图像,大小为28*28pixel,分属10个类别。我们的任务是对10个类别的“时装”图像进行分类。
1.1 导入必要的包和设置超参数
这一步是标准操作,几乎不用怎么变动,适用于很多深度学习任务。超参数部分可能需要根据具体情况做一些调整。
import os
import numpy as np
import pandas as pd # 用来读取实验数据,若不读取则用不到;一些内置数据集可以直接通过API获取
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
# 配置GPU, 使用“device”,后续对要使用GPU的变量用.to(device)即可
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") # 作者只使用了CPU
# 配置超参数,如batch_size, num_workers, learning rate, 以及总的epochs
batch_size = 256
num_workers = 4
lr = 1e-4
epochs = 20
1.2 数据读入和加载
第一种方式:下载并使用PyTorch提供的内置数据集。只适用于常见的数据集,如MNIST,CIFAR10等,PyTorch官方提供了数据下载。这种方式往往适用于快速测试方法(比如测试下某个idea在MNIST数据集上是否有效)
第二种方式:从网站下载以csv格式存储的数据,读入并转成预期的格式。需要自己构建Dataset,这对于PyTorch应用于自己的工作中十分重要。
同时,还需要对数据进行必要的变换,比如说需要将图片统一为一致的大小,以便后续能够输入网络训练;需要将数据格式转为Tensor类,等等。
1.2.1 设置数据变换
# 首先设置数据变换
from torchvision import transforms
image_size = 28
data_transform = transforms.Compose([
transforms.ToPILImage(), # 将shape为(C,H,W)的Tensor或shape为(H,W,C)的numpy.ndarray转换成PIL.Image,值不变; 这一步取决于后续的数据读取方式,如果使用内置数据集则不需要(本来就是PIL.Image,若加入的话,会出现错误)
transforms.Resize(image_size),
transforms.ToTensor() # Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
])
transforms.Resize(Resize the input image to the given size.)
- 参数 size (sequence or int) – Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
1.2.2 内置数据集读入方式
## 读取方式一:使用torchvision自带数据集,下载可能需要一段时间(国内较慢,挂上外网会快一些;若下载过程停止,可以多运行几次,接力完成下载任务)
from torchvision import datasets
train_data = datasets.FashionMNIST(root='./', train=True, download=True, transform=data_transform)
test_data = datasets.FashionMNIST(root='./', train=False, download=True, transform=data_transform)
下载到的文件如下所示:
1.2.3 外部数据集读入方式
csv数据下载链接:https://www.kaggle.com/zalando-research/fashionmnist
下图是 csv 的内容(每一行代表一个样本,包括图像和标签,其中图像用 28*28 个数值来表示)
class FMDataset(Dataset):
def __init__(self, df, transform=None):
self.df = df
self.transform = transform
self.images = df.iloc[:,1:].values.astype(np.uint8) # astype(np.uint8) 转换为 0-255 的数据格式
self.labels = df.iloc[:, 0].values
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = self.images[idx].reshape(28,28,1)
label = int(self.labels[idx])
if self.transform is not None:
image = self.transform(image)
else:
image = torch.tensor(image/255., dtype=torch.float) # 转换为 0-1 的值
label = torch.tensor(label, dtype=torch.long)
return image, label
train_df = pd.read_csv("./FashionMNIST/fashion-mnist_train.csv")
test_df = pd.read_csv("./FashionMNIST/fashion-mnist_test.csv")
train_data = FMDataset(train_df, data_transform)
test_data = FMDataset(test_df, data_transform)
1.2.4 数据载入
在构建训练和测试数据集完成后,需要定义DataLoader类,以便在训练和测试时加载数据
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=num_workers, drop_last=True)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=num_workers)
读入后,我们可以做一些数据可视化操作,主要是验证我们读入的数据是否正确
import matplotlib.pyplot as plt
image, label = next(iter(train_loader)) # next() 返回迭代器的下一个项目。next() 函数要和生成迭代器的 iter() 函数一起使用。
print(image.shape, label.shape) # torch.Size([256, 1, 28, 28]) torch.Size([256])
plt.imshow(image[0][0], cmap="gray") # iamge[0][0] 是取值 0-1 的矩阵
1.3 模型设计
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.cOnv= nn.Sequential(
nn.Conv2d(1, 32, 5),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
nn.Dropout(0.3),
nn.Conv2d(32, 64, 5),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
nn.Dropout(0.3)
)
self.fc = nn.Sequential(
nn.Linear(64*4*4, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.conv(x)
x = x.view(-1, 64*4*4)
x = self.fc(x)
# x = nn.functional.normalize(x)
return x
model = Net()
# model = model.cuda() # 作者未使用 GPU,所以不运行这行代码;若有 GPU 的话,则可以运行
# model = nn.DataParallel(model).cuda() # 多卡训练时的写法
1.4 设置损失函数和优化器
criterion = nn.CrossEntropyLoss() # PyTorch会自动把整数型的label转为one-hot型,用于计算CE loss 这里需要确保label是从0开始的,同时模型不加softmax层(使用logits计算)
# criterion = nn.CrossEntropyLoss(weight=[1,1,1,1,3,1,1,1,1,1])
optimizer = optim.Adam(model.parameters(), lr=lr)
1.5 训练和测试
各自封装成函数,方便后续调用
def train(epoch):
model.train()
train_loss = 0
for data, label in train_loader:
data, label = data.to(device), label.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, label)
loss.backward()
optimizer.step()
train_loss += loss.item()*data.size(0)
train_loss = train_loss/len(train_loader.dataset)
print('Epoch: {} \tTraining Loss: {:.6f}'.format(epoch, train_loss))
def val(epoch):
model.eval()
val_loss = 0
gt_labels = []
pred_labels = []
with torch.no_grad():
for data, label in test_loader:
data, label = data.to(device), label.to(device)
output = model(data)
preds = torch.argmax(output, 1)
gt_labels.append(label.cpu().data.numpy())
pred_labels.append(preds.cpu().data.numpy())
loss = criterion(output, label)
val_loss += loss.item()*data.size(0)
val_loss = val_loss/len(test_loader.dataset)
gt_labels, pred_labels = np.concatenate(gt_labels), np.concatenate(pred_labels)
acc = np.sum(gt_labels==pred_labels)/len(pred_labels)
print('Epoch: {} \tValidation Loss: {:.6f}, Accuracy: {:6f}'.format(epoch, val_loss, acc))
执行训练和验证代码
for epoch in range(1, epochs+1):
train(epoch)
val(epoch)
# Epoch: 1 Training Loss: 0.673025
# Epoch: 1 Validation Loss: 0.446441, Accuracy: 0.837000
# Epoch: 2 Training Loss: 0.423221
# Epoch: 2 Validation Loss: 0.369954, Accuracy: 0.865500
# ...
# Epoch: 19 Training Loss: 0.185280
# Epoch: 19 Validation Loss: 0.224482, Accuracy: 0.918800
# Epoch: 20 Training Loss: 0.176032
# Epoch: 20 Validation Loss: 0.224660, Accuracy: 0.917700
1.6 模型保存
训练完成后,可以使用torch.save保存模型参数或者整个模型,也可以在训练过程中保存模型
save_path = "./FahionModel.pkl"
torch.save(model, save_path)