热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

POJ3616MilkingTime(DP)

Bessieissuchahard-workingcow.Infact,sheissofocusedonmaximizingherproductivitythatshedecide

Bessie is such a hard-working cow. In fact, she is so focused on maximizing her productivity that she decides to schedule her next N (1 ≤ N ≤ 1,000,000) hours (conveniently labeled 0..N-1) so that she produces as much milk as possible.

Farmer John has a list of M (1 ≤ M ≤ 1,000) possibly overlapping intervals in which he is available for milking. Each interval i has a starting hour (0 ≤ starting_houri ≤ N), an ending hour (starting_houri < ending_houri ≤ N), and a corresponding efficiency (1 ≤ efficiencyi ≤ 1,000,000) which indicates how many gallons of milk that he can get out of Bessie in that interval. Farmer John starts and stops milking at the beginning of the starting hour and ending hour, respectively. When being milked, Bessie must be milked through an entire interval.

Even Bessie has her limitations, though. After being milked during any interval, she must rest R (1 ≤ R ≤ N) hours before she can start milking again. Given Farmer Johns list of intervals, determine the maximum amount of milk that Bessie can produce in the N hours.


Input

* Line 1: Three space-separated integers: NM, and R
* Lines 2..M&#43;1: Line i&#43;1 describes FJ&#39;s ith milking interval withthree space-separated integers: starting_houri , ending_houri , and efficiencyi


Output

* Line 1: The maximum number of gallons of milk that Bessie can product in the N hours


Sample Input

12 4 2
1 2 8
10 12 19
3 6 24
7 10 31

Sample Output

43


题意&#xff1a;你有一头奶牛&#xff0c;你能够在一定的时间里挤奶。而且挤奶量也不同&#xff0c;每次挤奶要休息r时间&#xff0c;问你最大可以挤多少奶。

水题一道&#xff0c;看完就知道一定是对时间段dp&#xff0c;然后就是两个for的事了。只要前面能满足条件的状态就可以转移过来&#xff0c;然后取最大&#xff0c;不过要先排序。

状态设定&#xff1a;dp[i]表示从开始取&#xff0c;到满足取第i段的最优值。


#include
#include
#include
using namespace std;
struct eg
{int x,y,w;
}e[1005];
bool cmp(eg a,eg b)
{if(a.y&#61;&#61;b.y)return a.x}
int main()
{int n,m,r,dp[1005],ans;scanf("%d%d%d",&n,&m,&r);for(int i&#61;0;i&#61;e[j].y&#43;r)dp[i]&#61;max(dp[i],dp[j]&#43;e[i].w);}ans&#61;max(ans,dp[i]);}printf("%d\n",ans);return 0;
}




推荐阅读
author-avatar
LookUp77
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有