热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

牛客多校第5场补题BGraph异或最小生成树

Graph题目链接题目大意给出一颗树,有两种操作,添加一条边,删除一条边。每个时刻必须满足如果有环那么环的边权异或和必须是0,必须是联通的。题解也就是先求一下每个节点到根节点的异或

Graph

题目链接

题目大意

给出一颗树,有两种操作,添加一条边,删除一条边。
每个时刻必须满足
如果有环那么环的边权异或和必须是0,
必须是联通的。

题解

也就是先求一下每个节点到根节点的异或和,然后用这些值的异或当边权求个最小生成树。
问题就是 知道一些点的点权,边权是两个点权异或,然后求最小生成树。
求最小异或值可以用字典树。
好了,比赛的时候就想到了这里,不会求了。然后考虑到了并查集,但是不会两个集合合并,也就是合并n – 1次,但是怎么求两个集合里的数各挑一个的异或最小值,然后就不会了好菜,连异或最小生成树都没听过

然后 异或最小生成树,可以这样求:
分治,从高位到低位考虑。最优肯定是:根据当前位分成这一位是1的和这一位是0的,左边合并完,右边合并完,然后 在左边找一个在右边找一个值合并,这样的话就可以把左边加到字典树里,遍历右边找最小的异或值。然后就相当于合并了。
显然合并了n – 1次,符合。
代码

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef unsigned long long ull;
typedef set<int>::iterator sit;
#define st first
#define sd second
#define mkp make_pair
#define pb push_back
void wenjian(){ freopen("concatenation.in","r",stdin);freopen("concatenation.out","w",stdout);}
void tempwj(){ freopen("hash.in","r",stdin);freopen("hash.out","w",stdout);}
ll gcd(ll a,ll b){ return b == 0 ? a : gcd(b,a % b);}
ll qpow(ll a,ll b,ll mod){ a %= mod;ll ans = 1;while(b){ if(b & 1)ans = ans * a % mod;a = a * a % mod;b >>= 1;}return ans;}
struct cmp{ bool operator()(const pii & a, const pii & b){ return a.second < b.second;}};
int lb(int x){ return x & -x;}
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll mod = 1e9 + 7;
const int maxn = 1e5+5;
int dep[maxn];
std::vector<pii> vv[maxn];
void dfs(int x,int fa,int d)
{
dep[x] = d;
for (int i = 0; i < vv[x].size(); i ++ )
{
int v = vv[x][i].st;
if(v == fa)
continue;
dfs(v,x,d ^ vv[x][i].sd);
}
}
int tree[maxn * 30][2];
int cnt =0 ;
void add(int x)
{
int p = 0;
for (int i = 30; i >= 0; i -- )
{
int f = x >> i & 1;
if(tree[p][f] == 0)
{
tree[p][f] = ++cnt;
}
p = tree[p][f];
// cout<
}
}
int query(int x)
{
int ans = 0;
int p = 0;
for (int i = 30; i >= 0; i -- )
{
int f = x >> i & 1;
if(tree[p][f])
{
p = tree[p][f];
// cout<
}
else
{
p = tree[p][!f];
ans += 1 << i;
}
}
return ans;
}
int num[maxn];
bool cmp(int a,int b)
{
return a > b;
}
ll ans =0;
void fenzhi(int l,int r,int de)
{
// printf("%d %d %d\n",l,r,de);
if(l >= r || de < 0)
return;
int mid = l;
while(mid <= r && (dep[mid] >> de & 1) == 0)
{
mid ++ ;
}
fenzhi(l,mid - 1,de - 1);
fenzhi(mid,r,de - 1);
if(mid <= l || mid > r)
return;
for (int i = l; i < mid; i ++ )
{
add(dep[i]);
}
int temp = inf;
for (int i = mid; i <= r; i ++ )
{
temp = min(temp,query(dep[i]));
}
// printf("%d %d %d %d\n",l,mid,r,temp);
ans += temp;
for (int i= 0; i <= cnt; i ++ )
{
tree[i][0] = tree[i][1] = 0;
}
cnt = 0;
}
int main()
{
int n;
scanf("%d",&n);
for (int i = 1; i < n; i ++ )
{
int x,y,val;
scanf("%d%d%d",&x,&y,&val);
vv[x].pb(mkp(y,val));
vv[y].pb(mkp(x,val));
}
dfs(0,0,0);
sort(dep,dep + n);
fenzhi(0,n - 1,30);
cout<<ans<<endl;
}

推荐阅读
  • 本问题涉及在给定的无向图中寻找一个至少包含三个节点的环,该环上的节点不重复,并且环上所有边的长度之和最小。目标是找到并输出这个最小环的具体方案。 ... [详细]
  • 在1995年,Simon Plouffe 发现了一种特殊的求和方法来表示某些常数。两年后,Bailey 和 Borwein 在他们的论文中发表了这一发现,这种方法被命名为 Bailey-Borwein-Plouffe (BBP) 公式。该问题要求计算圆周率 π 的第 n 个十六进制数字。 ... [详细]
  • 洛谷 P4009 汽车加油行驶问题 解析
    探讨了经典算法题目——汽车加油行驶问题,通过网络流和费用流的视角,深入解析了该问题的解决方案。本文将详细阐述如何利用最短路径算法解决这一问题,并提供详细的代码实现。 ... [详细]
  • 在Qt框架中,信号与槽机制是一种独特的组件间通信方式。本文探讨了这一机制相较于传统的C风格回调函数所具有的优势,并分析了其潜在的不足之处。 ... [详细]
  • 在尝试加载支持推送通知的iOS应用程序的Ad Hoc构建时,遇到了‘no valid aps-environment entitlement found for application’的错误提示。本文将探讨此错误的原因及多种可能的解决方案。 ... [详细]
  • 二维码的实现与应用
    本文介绍了二维码的基本概念、分类及其优缺点,并详细描述了如何使用Java编程语言结合第三方库(如ZXing和qrcode.jar)来实现二维码的生成与解析。 ... [详细]
  • 问题描述现在,不管开发一个多大的系统(至少我现在的部门是这样的),都会带一个日志功能;在实际开发过程中 ... [详细]
  • 深入解析WebP图片格式及其应用
    随着互联网技术的发展,无论是PC端还是移动端,图片数据流量占据了很大比重。尤其在高分辨率屏幕普及的背景下,如何在保证图片质量的同时减少文件大小,成为了亟待解决的问题。本文将详细介绍Google推出的WebP图片格式,探讨其在实际项目中的应用及优化策略。 ... [详细]
  • 本题要求计算一组正整数的最小公倍数(LCM)。输入包括多组测试数据,每组数据首先给出一个正整数n,随后是n个正整数。 ... [详细]
  • linux网络子系统分析(二)—— 协议栈分层框架的建立
    目录一、综述二、INET的初始化2.1INET接口注册2.2抽象实体的建立2.3代码细节分析2.3.1socket参数三、其他协议3.1PF_PACKET3.2P ... [详细]
  • Logging all MySQL queries into the Slow Log
    MySQLoptionallylogsslowqueriesintotheSlowQueryLog–orjustSlowLog,asfriendscallit.However,Thereareseveralreasonstologallqueries.Thislistisnotexhaustive:Belowyoucanfindthevariablestochange,astheyshouldbewritteninth ... [详细]
  • c语言二元插值,二维线性插值c语言
    c语言二元插值,二维线性插值c语言 ... [详细]
  • 本文详细介绍了如何在循环双链表的指定位置插入新元素的方法,包括必要的步骤和代码示例。 ... [详细]
  • H5技术实现经典游戏《贪吃蛇》
    本文将分享一个使用HTML5技术实现的经典小游戏——《贪吃蛇》。通过H5技术,我们将探讨如何构建这款游戏的两种主要玩法:积分闯关和无尽模式。 ... [详细]
  • 一、Advice执行顺序二、Advice在同一个Aspect中三、Advice在不同的Aspect中一、Advice执行顺序如果多个Advice和同一个JointPoint连接& ... [详细]
author-avatar
常叽叽_655
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有