热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

NeurIPS自动驾驶比赛结束,新加坡松下研究院申省梅团队夺冠...

雷锋网AI科技评论按,2018年12月8日,首届AIDrivingOlympics(AI-DO)在加拿大蒙特利尔举办

雷锋网 AI 科技评论按,2018 年 12 月 8 日,首届 AI Driving Olympics(AI-DO)在加拿大蒙特利尔举办,这场比赛是 NeurIPS 2018 八大比赛之一,由 Duckietown Foundation 联合 6 所学术机构 ETH Zürich (Switzerland)、Université de Montréal (Canada)、Tsinghua University (China)、National Chiao Tung University (Taiwan)、Toyota Technological Institute at Chicago (USA)、Georgia Tech (USA) 主办,NuTonomy 和 Amazon 提供赞助。

TB1peiNyPDpK1RjSZFrXXa78VXa.png

比赛官网:https://challenges.duckietown.org/v3/ 

本次比赛的主要目的是探讨机器学习在交互和系统方面的前沿问题,评估基于深度学习的系统控制移动机器人的实际能力。比赛共设四个赛道,包括指定车道行驶,有动态遮挡物的车道驾驶,自动导航和全自动移动车队规划四个挑战。 最终,由申省梅带领的新加坡松下研究院和新加坡国立大学团队获得了 AI-DO 竞赛冠军。

五强名单如下:

新加坡松下研究院和新加坡国立大学团队 WEI GAO

加拿大 Jon Plante、Vincent Mai

俄罗斯 JetBrains 团队 Mikita Sazanovich

SAIC(Samsung AI Center)

Moscow 团队 Anton Mashikhin

比赛过程中,参赛团队先用主办方提供的模拟器来开发和测试各自的算法和系统,然后提交到云端平台,以便评委做统一评测。评委将从中选出分数最高的 15 支团队的系统来进行现场表演和测试,通过在 5 轮不同场景下进行评测计分,综合分数最高者将获得冠军。

在大多数现实环境中,不能单靠一个指标决定系统的好坏,尤其是自动驾驶任务。因此,AI-DO 使用了多种绩效指标同时进行评测。此次比赛的评分维度包括:行驶距离,生存时间,横向偏差和重大违规四个方面。

冠军团队使用了随机模板,并创建了一个调试框架来测试算法。之后,他们为算法创建了一个 Python 包,并使用随机模板直接调用。该算法主要包括三部分:感知、预测、控制。当机器人处于摄像机无法观测到有用信息的急转弯时,预测起着至关重要的作用。 

据冠军团队对雷锋网介绍,比赛中的一个挑战是,模拟情况常常会与实际运行的环境不一样,在模拟器上可以高性能工作的算法或模型,在实际环境下的性能往往下降很大,或速度太慢无法实时运行。这时候,如何建立一个模拟实测不同环境的较准体系,以减少算法和视觉识别在不同环境下的差距,是一个很重要的策略。

比赛中,另一个极具挑战的地方在于:如果想要利用 AI 模型进行物体识别追踪、场景分割分类、预测和控制,想要完成多重任务并且实时操作,就要进行速度优化,对性能与速度进行综合考虑。

申省梅对雷锋网(公众号:雷锋网)表示,DAPAR GRAND 挑战赛促进了自动驾驶技术的发展和人形机器人的开拓,希望 AI-DO 这样一个开放式的比赛开发平台,能利用人工智能、深度学习、增强学习,为交互机器人以及交互自动驾驶带来重大突破。



推荐阅读
  • 了解供应链简单来说,供应链涉及一系列旨在向最终用户提供产品或服务的步骤。企业组织及其供应商之间始终存在一个网络,来生产特定产品并将其交付给最终用户。该网络包括不同的活动、人员、实体 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • 当前,众多初创企业对全栈工程师的需求日益增长,但市场中却存在大量所谓的“伪全栈工程师”,尤其是那些仅掌握了Node.js技能的前端开发人员。本文旨在深入探讨全栈工程师在现代技术生态中的真实角色与价值,澄清对这一角色的误解,并强调真正的全栈工程师应具备全面的技术栈和综合解决问题的能力。 ... [详细]
  • 基本价值在于商业落地,解决实际问题;真正的价值在于解决高价值问题,有两类:一解决民生、国力问题,提高国家的综合国力;二让人们的生活真正的更加美好。 近两年,很多学术大牛,进入工业界 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 深入解析监督学习的核心概念与应用
    本文深入探讨了监督学习的基本原理及其广泛应用。监督学习作为机器学习的重要分支,通过利用带有标签的训练数据,能够有效构建预测模型。文章详细解析了监督学习的关键概念,如特征选择、模型评估和过拟合问题,并介绍了其在图像识别、自然语言处理等领域的实际应用。 ... [详细]
  • 2020年高薪专业排行榜揭晓:计算机科学之外还有哪些值得关注的选择?
    近日,《2020年中国大学生就业报告》正式发布,揭示了除计算机科学外,多个高薪专业值得关注。报告指出,金融工程、电子信息工程、软件工程等领域的毕业生薪资水平同样表现优异,这些专业的就业前景和发展潜力不容忽视。此外,随着新兴行业的崛起,如大数据分析、人工智能和生物技术,相关专业的人才需求也在持续增长,为学生提供了更多优质的职业选择。 ... [详细]
  • 图像分割技术在人工智能领域中扮演着关键角色,其中语义分割、实例分割和全景分割是三种主要的方法。本文对这三种分割技术进行了详细的对比分析,探讨了它们在不同应用场景中的优缺点和适用范围,为研究人员和从业者提供了有价值的参考。 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 中国安全防护服务运营分析:视频监控维护服务的未来走向与发展潜力
    本文探讨了视频监控运维服务在中国的发展趋势与潜力。近年来,随着对安全防护需求的不断增加,视频监控系统作为高效、直观且准确的防范工具,逐渐受到政府和企业的高度重视。该系统能够实时呈现设防区域的现场情况,为安全管理和应急响应提供了重要支持。未来,随着技术的不断进步和应用场景的拓展,视频监控运维服务有望迎来更加广阔的发展空间。 ... [详细]
  • 算法和数据结构是计算机科学中最基础和最重要的两个主题,在软件开发中无处不在。我坚信,对这两个主题的充分了解对于成为一名更好的程序员也很关键, ... [详细]
author-avatar
odile微笑头
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有