- 数据来源:从网站上爬取56821条数据中文新闻摘要
- 数据内容:包含10种类别,国际、文化、娱乐、体育、财经、汽车、教育、科技、房产、证券
严格意义上来说这个新闻的数据集不是太好,每个类目的新闻数目不是一致的,一个好的数据集对于各个类别分布是比较均匀的。
数据进行预处理创建数据集和数据字典创建数据读取器train_reader 和test_reader
2、配置网络
定义网络
定义损失函数:交叉熵损失函数
定义优化算法:选择优化器,adam,SGD等等
3、训练网络需要对网络进行训练,丢入训练集,去训练我们的模型
4、模型评估# 查看当前挂载的数据集目录
!ls /home/aistudio/data/
#将数据移动到 /home/aistudio/data/ 目录下
!cp data/data6825/news_classify_data.txt data/
data6825
# 导入必要的包
import os #系统操作包
from multiprocessing import cpu_count
import numpy as np #计算包
import shutil
import paddle #paddle的工具包
import paddle.fluid as fluid
# 创建数据集和数据字典data_root_path='/home/aistudio/data/' #选择数据路径
#对我们读取出来的路径创建数据词典
def create_data_list(data_root_path):with open(data_root_path + 'test_list.txt', 'w') as f:passwith open(data_root_path + 'train_list.txt', 'w') as f:passwith open(os.path.join(data_root_path, 'dict_txt.txt'), 'r', encoding='utf-8') as f_data:dict_txt = eval(f_data.readlines()[0])with open(os.path.join(data_root_path, 'news_classify_data.txt'), 'r', encoding='utf-8') as f_data:lines = f_data.readlines()i = 0for line in lines:title = line.split('_!_')[-1].replace('\n', '')l = line.split('_!_')[1]labs = ""if i % 10 == 0:with open(os.path.join(data_root_path, 'test_list.txt'), 'a', encoding='utf-8') as f_test:for s in title:lab = str(dict_txt[s])labs = labs + lab + ','labs = labs[:-1]labs = labs + '\t' + l + '\n'f_test.write(labs)else:with open(os.path.join(data_root_path, 'train_list.txt'), 'a', encoding='utf-8') as f_train:for s in title:lab = str(dict_txt[s])labs = labs + lab + ','labs = labs[:-1]labs = labs + '\t' + l + '\n'f_train.write(labs)i += 1print("数据列表生成完成!")# 把下载得数据生成一个字典
#将每一个文本每一个子映射到词典得到一个数字ID,因为输入到模型里面的不是汉字,是一个数字ID
def create_dict(data_path, dict_path):dict_set = set()# 读取已经下载得数据with open(data_path, 'r', encoding='utf-8') as f:lines = f.readlines()# 把数据生成一个元组for line in lines:title = line.split('_!_')[-1].replace('\n', '')for s in title:dict_set.add(s)# 把元组转换成字典,一个字对应一个数字dict_list = []i = 0for s in dict_set:dict_list.append([s, i])i += 1# 添加未知字符dict_txt = dict(dict_list)end_dict = {"
def get_dict_len(dict_path):with open(dict_path, 'r', encoding='utf-8') as f:line = eval(f.readlines()[0])return len(line.keys())if __name__ == '__main__':# 把生产的数据列表都放在自己的总类别文件夹中data_root_path = "/home/aistudio/data/"data_path = os.path.join(data_root_path, 'news_classify_data.txt')dict_path = os.path.join(data_root_path, "dict_txt.txt")# 创建数据字典create_dict(data_path, dict_path)# 创建数据列表create_data_list(data_root_path)
数据字典生成完成!
数据列表生成完成!
创建好的字典:每一个字会对应一个数字ID
创建好的数据列表:文本转化为序列化的表示
每一行代表一句新闻,就是一个样本。
paddle.reader.xmap_readers():通过多线程方式,通过用户自定义的映射器mapper来映射reader返回的样本(到输出队列)。
# 创建数据读取器train_reader 和test_reader
# 训练/测试数据的预处理
def data_mapper(sample):data, label = sampledata = [int(data) for data in data.split(',')]return data, int(label)# 创建数据读取器train_reader
def train_reader(train_list_path):def reader():with open(train_list_path, 'r') as f:lines = f.readlines()# 打乱数据np.random.shuffle(lines)# 开始获取每张图像和标签for line in lines:data, label = line.split('\t')yield data, labelreturn paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 1024)
# 创建数据读取器test_reader
def test_reader(test_list_path):def reader():with open(test_list_path, 'r') as f:lines = f.readlines()for line in lines:data, label = line.split('\t')yield data, labelreturn paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 1024)
至此,数据准备工作已经完成了。
卷积神经网络(Convolutional Neural Networks, CNN)输入词向量序列,产生一个特征图(feature map),对特征图采用时间维度上的最大池化(max pooling over time)操作得到此卷积核对应的整句话的特征,最后,将所有卷积核得到的特征拼接起来即为文本的定长向量表示,对于文本分类问题,将其连接至softmax即构建出完整的模型。
在实际应用中,我们会使用多个卷积核来处理句子,窗口大小相同的卷积核堆叠起来形成一个矩阵,这样可以更高效的完成运算。
另外,我们也可使用窗口大小不同的卷积核来处理句子.
# 创建CNN网络def CNN_net(data,dict_dim, class_dim=10, emb_dim=128, hid_dim=128,hid_dim2=98):emb = fluid.layers.embedding(input=data,#进模型之前需要得到一个emb词嵌入,得到一个矩阵的编码size=[dict_dim, emb_dim])conv_3 = fluid.nets.sequence_conv_pool(input=emb,num_filters=hid_dim,filter_size=3,#卷积核act="tanh",pool_type="sqrt")conv_4 = fluid.nets.sequence_conv_pool(input=emb,num_filters=hid_dim2,filter_size=4,act="tanh",pool_type="sqrt")output = fluid.layers.fc(input=[conv_3, conv_4], size=class_dim, act='softmax')#经过全连接层,将两个cnn的结果拼接起来return output#1x10的概率分布的矩阵,10个数,概率最大的数就是当前模型的预测结果
# 定义输入数据, lod_level不为0指定输入数据为序列数据
words = fluid.layers.data(name='words', shape=[1], dtype='int64', lod_level=1)#lod_level 处理变长序列,paddle官网的文档中LoDtensor lodlayer的索引 定长的数据不需要考虑这个问题
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# 获取数据字典长度
dict_dim = get_dict_len('/home/aistudio/data/dict_txt.txt')
# 获取卷积神经网络
# model = CNN_net(words, dict_dim, 15)
# 获取分类器
model = CNN_net(words, dict_dim)
# 获取损失函数和准确率
cost = fluid.layers.cross_entropy(input=model, label=label)#损失函数
avg_cost = fluid.layers.mean(cost)#每次训练都是一个batch,求一个平均
acc = fluid.layers.accuracy(input=model, label=label)# 获取预测程序
test_program = fluid.default_main_program().clone(for_test=True)#clone克隆函数# 定义优化方法
optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.002)
opt = optimizer.minimize(avg_cost)# 创建一个执行器,CPU训练速度比较慢
#place = fluid.CPUPlace()
place = fluid.CUDAPlace(0)#GPU执行
exe = fluid.Executor(place)
# 进行参数初始化
exe.run(fluid.default_startup_program())
[]
# 获取训练数据读取器和测试数据读取器
train_reader = paddle.batch(reader=train_reader('/home/aistudio/data/train_list.txt'), batch_size=128)
test_reader = paddle.batch(reader=test_reader('/home/aistudio/data/test_list.txt'), batch_size=128)
# 定义数据映射器
feeder = fluid.DataFeeder(place=place, feed_list=[words, label])
EPOCH_NUM=20#迭代次数
model_save_dir = '/home/aistudio/work/infer_model/'
# 开始训练for pass_id in range(EPOCH_NUM):# 进行训练for batch_id, data in enumerate(train_reader()):train_cost, train_acc = exe.run(program=fluid.default_main_program(),feed=feeder.feed(data),fetch_list=[avg_cost, acc])if batch_id % 100 == 0:#每执行100次,打印一次print('Pass:%d, Batch:%d, Cost:%0.5f, Acc:%0.5f' % (pass_id, batch_id, train_cost[0], train_acc[0]))# 进行测试,读入一批陌生的数据,模型没有见过的数据,test_costs = []test_accs = []for batch_id, data in enumerate(test_reader()):test_cost, test_acc = exe.run(program=test_program,feed=feeder.feed(data),fetch_list=[avg_cost, acc])test_costs.append(test_cost[0])test_accs.append(test_acc[0])# 计算平均预测损失在和准确率test_cost = (sum(test_costs) / len(test_costs))test_acc = (sum(test_accs) / len(test_accs))print('Test:%d, Cost:%0.5f, ACC:%0.5f' % (pass_id, test_cost, test_acc))# 保存预测模型,可以考虑将这段保存模型的代码放到for循环里面,将每一轮的模型都保存起来
if not os.path.exists(model_save_dir): os.makedirs(model_save_dir)
fluid.io.save_inference_model(model_save_dir, feeded_var_names=[words.name], target_vars=[model], executor=exe)
print('训练模型保存完成!')
Pass:0, Batch:0, Cost:2.30681, Acc:0.09375
Pass:0, Batch:100, Cost:0.99743, Acc:0.68750
Pass:0, Batch:200, Cost:0.89360, Acc:0.76562
Pass:0, Batch:300, Cost:0.92248, Acc:0.70312
Test:0, Cost:0.81883, ACC:0.73921
Pass:1, Batch:0, Cost:0.90457, Acc:0.67969
Pass:1, Batch:100, Cost:0.67305, Acc:0.83594
Pass:1, Batch:200, Cost:0.63098, Acc:0.80469
Pass:1, Batch:300, Cost:0.76019, Acc:0.77344
Test:1, Cost:0.75819, ACC:0.75909
Pass:2, Batch:0, Cost:0.73232, Acc:0.76562
Pass:2, Batch:100, Cost:0.70476, Acc:0.77344
Pass:2, Batch:200, Cost:0.71542, Acc:0.75781
Pass:2, Batch:300, Cost:0.63258, Acc:0.78125
Test:2, Cost:0.73717, ACC:0.76160
Pass:3, Batch:0, Cost:0.56025, Acc:0.82812
Pass:3, Batch:100, Cost:0.48580, Acc:0.86719
Pass:3, Batch:200, Cost:0.54991, Acc:0.84375
Pass:3, Batch:300, Cost:0.67272, Acc:0.78906
Test:3, Cost:0.72726, ACC:0.76317
Pass:4, Batch:0, Cost:0.53660, Acc:0.82812
Pass:4, Batch:100, Cost:0.73550, Acc:0.78906
Pass:4, Batch:200, Cost:0.53774, Acc:0.80469
Pass:4, Batch:300, Cost:0.46155, Acc:0.85156
Test:4, Cost:0.72185, ACC:0.76169
Pass:5, Batch:0, Cost:0.65421, Acc:0.78906
Pass:5, Batch:100, Cost:0.59889, Acc:0.80469
Pass:5, Batch:200, Cost:0.71301, Acc:0.79688
Pass:5, Batch:300, Cost:0.69682, Acc:0.81250
Test:5, Cost:0.71626, ACC:0.76525
Pass:6, Batch:0, Cost:0.72434, Acc:0.75000
Pass:6, Batch:100, Cost:0.59109, Acc:0.77344
Pass:6, Batch:200, Cost:0.48783, Acc:0.81250
Pass:6, Batch:300, Cost:0.57463, Acc:0.81250
Test:6, Cost:0.71520, ACC:0.76447
Pass:7, Batch:0, Cost:0.50502, Acc:0.84375
Pass:7, Batch:100, Cost:0.62133, Acc:0.79688
Pass:7, Batch:200, Cost:0.68593, Acc:0.76562
Pass:7, Batch:300, Cost:0.55528, Acc:0.80469
Test:7, Cost:0.71300, ACC:0.76769
Pass:8, Batch:0, Cost:0.60046, Acc:0.76562
Pass:8, Batch:100, Cost:0.47617, Acc:0.82812
Pass:8, Batch:200, Cost:0.59591, Acc:0.79688
Pass:8, Batch:300, Cost:0.66050, Acc:0.76562
Test:8, Cost:0.71475, ACC:0.76594
Pass:9, Batch:0, Cost:0.40968, Acc:0.84375
Pass:9, Batch:100, Cost:0.50980, Acc:0.81250
Pass:9, Batch:200, Cost:0.55923, Acc:0.85156
Pass:9, Batch:300, Cost:0.42255, Acc:0.87500
Test:9, Cost:0.71282, ACC:0.76717
Pass:10, Batch:0, Cost:0.44147, Acc:0.88281
Pass:10, Batch:100, Cost:0.55140, Acc:0.85938
Pass:10, Batch:200, Cost:0.50935, Acc:0.84375
Pass:10, Batch:300, Cost:0.56366, Acc:0.83594
Test:10, Cost:0.71520, ACC:0.76586
Pass:11, Batch:0, Cost:0.55133, Acc:0.79688
Pass:11, Batch:100, Cost:0.45308, Acc:0.80469
Pass:11, Batch:200, Cost:0.63471, Acc:0.78125
Pass:11, Batch:300, Cost:0.52810, Acc:0.80469
Test:11, Cost:0.71511, ACC:0.76673
Pass:12, Batch:0, Cost:0.51947, Acc:0.83594
Pass:12, Batch:100, Cost:0.63086, Acc:0.80469
Pass:12, Batch:200, Cost:0.57166, Acc:0.82812
Pass:12, Batch:300, Cost:0.59658, Acc:0.75781
Test:12, Cost:0.71533, ACC:0.76673
Pass:13, Batch:0, Cost:0.34512, Acc:0.89062
Pass:13, Batch:100, Cost:0.47249, Acc:0.82812
Pass:13, Batch:200, Cost:0.51224, Acc:0.85156
Pass:13, Batch:300, Cost:0.45350, Acc:0.84375
Test:13, Cost:0.71736, ACC:0.76647
Pass:14, Batch:0, Cost:0.45494, Acc:0.85156
Pass:14, Batch:100, Cost:0.68085, Acc:0.78125
Pass:14, Batch:200, Cost:0.48124, Acc:0.83594
Pass:14, Batch:300, Cost:0.47296, Acc:0.85938
Test:14, Cost:0.71745, ACC:0.76760
Pass:15, Batch:0, Cost:0.73750, Acc:0.77344
Pass:15, Batch:100, Cost:0.55038, Acc:0.83594
Pass:15, Batch:200, Cost:0.59775, Acc:0.74219
Pass:15, Batch:300, Cost:0.47932, Acc:0.82812
Test:15, Cost:0.72163, ACC:0.76673
Pass:16, Batch:0, Cost:0.31890, Acc:0.90625
Pass:16, Batch:100, Cost:0.38017, Acc:0.85156
Pass:16, Batch:200, Cost:0.57517, Acc:0.79688
Pass:16, Batch:300, Cost:0.44878, Acc:0.87500
Test:16, Cost:0.72158, ACC:0.76786
Pass:17, Batch:0, Cost:0.43048, Acc:0.88281
Pass:17, Batch:100, Cost:0.47145, Acc:0.82031
Pass:17, Batch:200, Cost:0.47934, Acc:0.82812
Pass:17, Batch:300, Cost:0.36709, Acc:0.89062
Test:17, Cost:0.72381, ACC:0.76647
Pass:18, Batch:0, Cost:0.35568, Acc:0.88281
Pass:18, Batch:100, Cost:0.61057, Acc:0.82031
Pass:18, Batch:200, Cost:0.40052, Acc:0.88281
Pass:18, Batch:300, Cost:0.45469, Acc:0.83594
Test:18, Cost:0.72549, ACC:0.76743
Pass:19, Batch:0, Cost:0.41658, Acc:0.86719
Pass:19, Batch:100, Cost:0.48703, Acc:0.86719
Pass:19, Batch:200, Cost:0.47010, Acc:0.83594
Pass:19, Batch:300, Cost:0.35333, Acc:0.84375
Test:19, Cost:0.72887, ACC:0.76690
训练模型保存完成!
# 用训练好的模型进行预测并输出预测结果
# 创建执行器
#place = fluid.CPUPlace()
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())save_path = '/home/aistudio/work/infer_model/'# 从模型中获取预测程序、输入数据名称列表、分类器
[infer_program, feeded_var_names, target_var] = fluid.io.load_inference_model(dirname=save_path, executor=exe)# 获取数据
def get_data(sentence):# 读取数据字典with open('/home/aistudio/data/dict_txt.txt', 'r', encoding='utf-8') as f_data:dict_txt = eval(f_data.readlines()[0])dict_txt = dict(dict_txt)# 把字符串数据转换成列表数据keys = dict_txt.keys()data = []for s in sentence:# 判断是否存在未知字符if not s in keys:s = '
# 获取图片数据
data1 = get_data('在获得诺贝尔文学奖7年之后,莫言15日晚间在山西汾阳贾家庄如是说')
data2 = get_data('综合“今日美国”、《世界日报》等当地媒体报道,芝加哥河滨警察局表示,')
data.append(data1)
data.append(data2)# 获取每句话的单词数量
base_shape = [[len(c) for c in data]]# 生成预测数据
tensor_words = fluid.create_lod_tensor(data, base_shape, place)# 执行预测
result = exe.run(program=infer_program,feed={feeded_var_names[0]: tensor_words},fetch_list=target_var)# 分类名称
names = [ '文化', '娱乐', '体育', '财经','房产', '汽车', '教育', '科技', '国际', '证券']# 获取结果概率最大的label
for i in range(len(data)):lab = np.argsort(result)[0][i][-1]#10个概率值,对其进行排序,选择最大的那个概率,(-1)print('预测结果标签为:%d, 名称为:%s, 概率为:%f' % (lab, names[lab], result[0][i][lab]))
预测结果标签为:0, 名称为:文化, 概率为:0.949490
预测结果标签为:8, 名称为:国际, 概率为:0.472569