热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Mysql中间件研究(Atlas,cobar,TDDL)

http:www.th7.cndbmysql20140659016.shtmlmysql-proxy是官方提供的mysql中间件产品可以实现负载平衡,读写分离

http://www.th7.cn/db/mysql/201406/59016.shtml

mysql-proxy是官方提供的mysql中间件产品可以实现负载平衡,读写分离,failover等,但其不支持大数据量的分库分表且性能较差。下面介绍几款能代替其的mysql开源中间件产品,Atlas,cobar,tddl,让我们看看它们各自有些什么优点和新特性吧。

Atlas

Atlas是由 Qihoo 360, Web平台部基础架构团队开发维护的一个基于MySQL协议的数据中间层项目。它是在mysql-proxy 0.8.2版本的基础上,对其进行了优化,增加了一些新的功能特性。360内部使用Atlas运行的mysql业务,每天承载的读写请求数达几十亿条。
Altas架构:
Atlas是一个位于应用程序与MySQL之间,它实现了MySQL的客户端与服务端协议,作为服务端与应用程序通讯,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。

以下是一个可以参考的整体架构,LVS前端做负载均衡,两个Altas做HA,防止单点故障。

Altas的一些新特性:
1.主库宕机不影响读
主库宕机,Atlas自动将宕机的主库摘除,写操作会失败,读操作不受影响。从库宕机,Atlas自动将宕机的从库摘除,对应用没有影响。在mysql官方的proxy中主库宕机,从库亦不可用。
2.通过管理接口,简化管理工作,DB的上下线对应用完全透明,同时可以手动上下线。
图1是手动添加一台从库的示例。
图1

3.自己实现读写分离
(1)为了解决读写分离存在写完马上就想读而这时可能存在主从同步延迟的情况,Altas中可以在SQL语句前增加 /*master*/ 就可以将读请求强制发往主库。
(2)如图2中,主库可设置多项,用逗号分隔,从库可设置多项和权重,达到负载均衡。
图2

4.自己实现分表(图3)
(1)需带有分表字段。
(2)支持SELECT、INSERT、UPDATE、DELETE、REPLACE语句。
(3)支持多个子表查询结果的合并和排序。
图3 

这里不得不吐槽Atlas的分表功能,不能实现分布式分表,所有的子表必须在同一台DB的同一个database里且所有的子表必须事先建好,Atlas没有自动建表的功能。
5.之前官方主要功能逻辑由使用lua脚本编写,效率低,Atlas用C改写,QPS提高,latency降低。
6.安全方面的提升
(1)通过配置文件中的pwds参数进行连接Atlas的用户的权限控制。
(2)通过client-ips参数对有权限连接Atlas的ip进行过滤。
(3)日志中记录所有通过Altas处理的SQL语句,包括客户端IP、实际执行该语句的DB、执行成功与否、执行所耗费的时间 ,如下面例子(图4)。
图4

7.平滑重启
通过配置文件中设置lvs-ips参数实现平滑重启功能,否则重启Altas的瞬间那些SQL请求都会失败。该参数前面挂接的lvs的物理网卡的ip,注意不是虚ip。平滑重启的条件是至少有两台配置相同的Atlas且挂在lvs之后。
source:https://github.com/Qihoo360/Atlas

alibaba.cobar

Cobar是阿里巴巴(B2B)部门开发的一种关系型数据的分布式处理系统,它可以在分布式的环境下看上去像传统数据库一样为您提供海量数据服务。那么具体说说我们为什么要用它,或说cobar--能干什么?以下是我们业务运行中会存在的一些问题:
1.随着业务的进行数据库的数据量和访问量的剧增,需要对数据进行水平拆分来降低单库的压力,而且需要高效且相对透明的来屏蔽掉水平拆分的细节。
2.为提高访问的可用性,数据源需要备份。
3.数据源可用性的检测和failover。
4.前台的高并发造成后台数据库连接数过多,降低了性能,怎么解决。 
针对以上问题就有了cobar施展自己的空间了,cobar中间件以proxy的形式位于前台应用和实际数据库之间,对前台的开放的接口是mysql通信协议。将前台SQL语句变更并按照数据分布规则转发到合适的后台数据分库,再合并返回结果,模拟单库下的数据库行为。 

Cobar应用举例
应用架构:

应用介绍:
1.通过Cobar提供一个名为test的数据库,其中包含t1,t2两张表。后台有3个MySQL实例(ip:port)为其提供服务,分别为:A,B,C。
2.期望t1表的数据放置在实例A中,t2表的数据水平拆成四份并在实例B和C中各自放两份。t2表的数据要具备HA功能,即B或者C实例其中一个出现故障,不影响使用且可提供完整的数据服务。
cabar优点总结:
1.数据和访问从集中式改变为分布:
(1)Cobar支持将一张表水平拆分成多份分别放入不同的库来实现表的水平拆分
(2)Cobar也支持将不同的表放入不同的库
(3) 多数情况下,用户会将以上两种方式混合使用
注意!:Cobar不支持将一张表,例如test表拆分成test_1,test_2, test_3.....放在同一个库中,必须将拆分后的表分别放入不同的库来实现分布式。
2.解决连接数过大的问题。
3.对业务代码侵入性少。
4.提供数据节点的failover,HA:
(1)Cobar的主备切换有两种触发方式,一种是用户手动触发,一种是Cobar的心跳语句检测到异常后自动触发。那么,当心跳检测到主机异常,切换到备机,如果主机恢复了,需要用户手动切回主机工作,Cobar不会在主机恢复时自动切换回主机,除非备机的心跳也返回异常。
(2)Cobar只检查MySQL主备异常,不关心主备之间的数据同步,因此用户需要在使用Cobar之前在MySQL主备上配置双向同步。
cobar缺点:
开源版本中数据库只支持mysql,并且不支持读写分离。
source:http://code.alibabatech.com/wiki/display/cobar/Home

TDDL

淘宝根据自己的业务特点开发了TDDL(Taobao Distributed Data Layer 外号:头都大了 ©_Ob)框架,主要解决了分库分表对应用的透明化以及异构数据库之间的数据复制,它是一个基于集中式配置的 jdbc datasource实现,具有主备,读写分离,动态数据库配置等功能。
TDDL所处的位置(tddl通用数据访问层,部署在客户端的jar包,用于将用户的SQL路由到指定的数据库中):

淘宝很早就对数据进行过分库的处理, 上层系统连接多个数据库,中间有一个叫做DBRoute的路由来对数据进行统一访问。DBRoute对数据进行多库的操作、数据的整合,让上层系统像操作一个数据库一样操作多个库。但是随着数据量的增长,对于库表的分法有了更高的要求,例如,你的商品数据到了百亿级别的时候,任何一个库都无法存放了,于是分成2个、4个、8个、16个、32个……直到1024个、2048个。好,分成这么多,数据能够存放了,那怎么查询它?这时候,数据查询的中间件就要能够承担这个重任了,它对上层来说,必须像查询一个数据库一样来查询数据,还要像查询一个数据库一样快(每条查询在几毫秒内完成),TDDL就承担了这样一个工作。在外面有些系统也用DAL(数据访问层) 这个概念来命名这个中间件。
下图展示了一个简单的分库分表数据查询策略:

主要优点:
1.数据库主备和动态切换
2.带权重的读写分离
3.单线程读重试
4.集中式数据源信息管理和动态变更
5.剥离的稳定jboss数据源
6.支持mysql和oracle数据库
7.基于jdbc规范,很容易扩展支持实现jdbc规范的数据源
8.无server,client-jar形式存在,应用直连数据库
9.读写次数,并发度流程控制,动态变更
10.可分析的日志打印,日志流控,动态变更
TDDL必须要依赖diamond配置中心(diamond是淘宝内部使用的一个管理持久配置的系统,目前淘宝内部绝大多数系统的配置,由diamond来进行统一管理,同时diamond也已开源)。
TDDL动态数据源使用示例说明:http://rdc.taobao.com/team/jm/archives/1645
diamond简介和快速使用:http://jm.taobao.org/tag/diamond%E4%B8%93%E9%A2%98/
TDDL源码:https://github.com/alibaba/tb_tddl 
TDDL复杂度相对较高。当前公布的文档较少,只开源动态数据源,分表分库部分还未开源,还需要依赖diamond,不推荐使用。
终其所有,我们研究中间件的目的是使数据库实现性能的提高。具体使用哪种还要经过深入的研究,严谨的测试才可决定。


推荐阅读
  • 小王详解:内部网络中最易理解的NAT原理剖析,挑战你的认知极限
    小王详解:内部网络中最易理解的NAT原理剖析,挑战你的认知极限 ... [详细]
  • 网站访问全流程解析
    本文详细介绍了从用户在浏览器中输入一个域名(如www.yy.com)到页面完全展示的整个过程,包括DNS解析、TCP连接、请求响应等多个步骤。 ... [详细]
  • 本文探讨了使用Python进行微服务架构设计的合理性和适用性。首先,介绍了微服务的基本概念及其在现代软件开发中的重要性。接着,通过具体的业务场景,详细分析了Python在微服务架构设计中的优势和挑战。文章还讨论了在实际应用中可能遇到的问题,并提出了相应的解决方案。希望本文能够为从事Python微服务开发的技术人员提供有价值的参考和指导。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 2016-2017学年《网络安全实战》第三次作业
    2016-2017学年《网络安全实战》第三次作业总结了教材中关于网络信息收集技术的内容。本章主要探讨了网络踩点、网络扫描和网络查点三个关键步骤。其中,网络踩点旨在通过公开渠道收集目标信息,为后续的安全测试奠定基础,而不涉及实际的入侵行为。 ... [详细]
  • 本文详细介绍了 Java 网站开发的相关资源和步骤,包括常用网站、开发环境和框架选择。 ... [详细]
  • 本文介绍了 Go 语言中的高性能、可扩展、轻量级 Web 框架 Echo。Echo 框架简单易用,仅需几行代码即可启动一个高性能 HTTP 服务。 ... [详细]
  • 本文详细介绍了Java代码分层的基本概念和常见分层模式,特别是MVC模式。同时探讨了不同项目需求下的分层策略,帮助读者更好地理解和应用Java分层思想。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 秒建一个后台管理系统?用这5个开源免费的Java项目就够了
    秒建一个后台管理系统?用这5个开源免费的Java项目就够了 ... [详细]
  • MySQL的查询执行流程涉及多个关键组件,包括连接器、查询缓存、分析器和优化器。在服务层,连接器负责建立与客户端的连接,查询缓存用于存储和检索常用查询结果,以提高性能。分析器则解析SQL语句,生成语法树,而优化器负责选择最优的查询执行计划。这一流程确保了MySQL能够高效地处理各种复杂的查询请求。 ... [详细]
  • PTArchiver工作原理详解与应用分析
    PTArchiver工作原理及其应用分析本文详细解析了PTArchiver的工作机制,探讨了其在数据归档和管理中的应用。PTArchiver通过高效的压缩算法和灵活的存储策略,实现了对大规模数据的高效管理和长期保存。文章还介绍了其在企业级数据备份、历史数据迁移等场景中的实际应用案例,为用户提供了实用的操作建议和技术支持。 ... [详细]
  • 浏览器作为我们日常不可或缺的软件工具,其背后的运作机制却鲜为人知。本文将深入探讨浏览器内核及其版本的演变历程,帮助读者更好地理解这一关键技术组件,揭示其内部运作的奥秘。 ... [详细]
  • 在JavaWeb项目架构中,NFS(网络文件系统)的实现与优化是关键环节。NFS允许不同主机系统通过局域网共享文件和目录,提高资源利用率和数据访问效率。本文详细探讨了NFS在JavaWeb项目中的应用,包括配置、性能优化及常见问题的解决方案,旨在为开发者提供实用的技术参考。 ... [详细]
author-avatar
相对论!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有