热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

MongoDB的性能优势

最近开始研究MySQL和MongoDB,发现这方面资料不多。尤其是真正的说到点子上的文章,太少了。有一些对比测试的文章基本上都是瞎测,测试方法都测到了马腿上,得出的结论基本上都是NoSQL毫无价值容我借用RussellSmith的那句话:不是MongoDB不行,是你不懂

最近开始研究MySQL和MongoDB,发现这方面资料不多。尤其是真正的说到点子上的文章,太少了。

有一些对比测试的文章基本上都是瞎测,测试方法都测到了马腿上,得出的结论基本上都是NoSQL毫无价值

容我借用Russell Smith 的那句话:不是MongoDB不行,是你不懂。

让我来分析一下MongoDB的真正性能吧。

有说MongoDB慢

  反对:不设其他唯一索引的情况下,只用_id 在普通办公电脑上每秒插入几万,在普通x86服务器上每秒插入十几万,你好意思说这个性能低?比mysql强出一个数量级。

      赞同:检索是真的慢,和sql数据库不同,越复杂的条件搜索MangoDB越吃亏,CPU和IO的双重压力。面对那些直接把SQL查询改写成MangoDB的用法,别转了,你不会收获任何性能提升。

      你不行:说你不行还是真的不行,MongoDB领导了NoSQL运动,NoSQL请注意,我们最主要反对的就是SQL的方法论,按SQL方法使用MangoDB你只能收获失望。再想想MongoDB的设计思想:文档化。_id 就是文件名,MongoDB是个文件系统。全文检索?别闹了,用文件名找文件,一个文件名对应一个文件,你绝对不会失望。

那么MongoDB究竟应该怎么用呢?

首先,忘记SQL

你应该忘记你学过的那些优雅无敌的SQL,不是说为了提升检索性能,扔索引就有好处。

有一个简单的事实如下:只有一个默认的_id 索引,此时插入性能为1,你再加一个索引,插入性能约1/2,再加一个约1/3 ,以此类推......

如果这个事实对你是很震撼的,那说明你还没有忘记SQL,接着忘。

MongoDB的索引对插入性能有着不可忽略的拖后腿效应,所以,我们应该使用且仅使用 _id 作为插入key,作为查询key,作为所有的那个key。

其次,直接忘记搜索这件事。

把MongoDB当做你的硬盘,给他文件名去操作文件.这就是Key-Value数据库的做法,你稍加设计就能这么用。

那么其实你所有的操作可以简化为两个指令,逻辑上 就是一个字典

你给他_id,往字典里插一个数据,或者拿一个数据。

Save({_id:xxx,.....})

FindOne({_id:xxx})

要想高性能,善用那个_id,把你原来准备当主键的那个玩意,hash成_id.

把你原来准备的查询条件,什么?查询,拿_id来,别的全砍掉。

第三、这不是数据表

记住,这不是数据表,一个_id对应的东西不是一行数据,而是一个文件。

文件存储和表存储有什么不同呢?

我举个例子,比如我们要存储用户列表和每个用户的道具列表。

数据表的做法是建一张用户表,一张道具表,道具表里有个字段表示他属于哪个用户。

然后,你就离不开万恶的查询了。

然后如果一个用户有100条道具,100万用户意味着道具表有一亿条记录。

这时候就开始考验你的小数据库了,但这都是过去式了,这一亿的道具,用MongoDB,根本不是个事儿

因为MongoDB的方法是当做文件存,只设计一个用户集合,每个用户的信息是一个文件,然后这100个道具就分开存在每个用户的文件里。

然后来比较一下,我们取得用户的记录,然后从中拿出100个道具,NoSQL方法。

查一亿的表,找出属于某个用户的记录。

熟快熟慢?

然后你可能回想,SQL方法,我也可以搞个道具字段,把用户的100个道具用某种协议打包,然后操作啊,一样可以取得巨大的优化呀。

没错,你的想法很好,你正在用NOSQL的方式用SQL。

第四、文件存储的精华之处

如果问题止于此处,MongoDB就毫无优势可言了,如果这个方法在SQL数据库上也是如此容易使用,那还费劲搞MongoDB干什么?

我们再折腾一点,如果每个道具还要存100条转手记录,你还是可以打包,但你这个打包字段已经1M了。

于是每次存取这个打包字段都是一个系统工程了,还要负担1M的流量。

MongoDB这边呢?我们可以直接对文件的一部分进行读写,比如我只返回一个用户的第二个道具的信息,和返回第二个道具的第1~30条转手记录。

这,是一种怎样的差距啊。

你想要一张美女的照片,你朋友有,但是他只有一个压缩包,他那里没有解包工具,于是他把整个包传给了你。他想问你要一张照片,但是他没有压缩工具,为了存档需要,他让你再压进包里传给他。

这个朋友就是你的用户表的一行,如果换成真实世界的事件是多么的不可思议,这就是在一个字段里打包数据的问题。

MongoDB的一条记录就是一个脑筋更正常的朋友,你要他一张照片,他从包里找出来给你。你给他一张照片,他分门别类的放置到他的包里去。

用文件的思维去访问,MongoDB是一个更好的朋友。

审视一下你项目中的大部分的数据需求,是不是都可以用这种方式去组织呢?

如果是,加入NOSQL吧,我们的口号是:很暴力不SQL

还有什么好处 

1.不用逻辑关心的水平切分

  无需多言,对MongoDB而言,这是运维人员的工作了

2.不用对齐的数据结构

  不用对齐意味着你不用为以前表结构变化的迁移烦恼,有些文件里有一个部分,有些没有,这对MongoDB而言,很正常。

    
推荐阅读
  • Redis:缓存与内存数据库详解
    本文介绍了数据库的基本分类,重点探讨了关系型与非关系型数据库的区别,并详细解析了Redis作为非关系型数据库的特点、工作模式、优点及持久化机制。 ... [详细]
  • MongoDB核心概念详解
    本文介绍了NoSQL数据库的概念及其应用场景,重点解析了MongoDB的基本特性、数据结构以及常用操作。MongoDB是一个高性能、高可用且易于扩展的文档数据库系统。 ... [详细]
  • 在CentOS 7环境中安装配置Redis及使用Redis Desktop Manager连接时的注意事项与技巧
    在 CentOS 7 环境中安装和配置 Redis 时,需要注意一些关键步骤和最佳实践。本文详细介绍了从安装 Redis 到配置其基本参数的全过程,并提供了使用 Redis Desktop Manager 连接 Redis 服务器的技巧和注意事项。此外,还探讨了如何优化性能和确保数据安全,帮助用户在生产环境中高效地管理和使用 Redis。 ... [详细]
  • Oracle字符集详解:图表解析与中文乱码解决方案
    本文详细解析了 Oracle 数据库中的字符集机制,通过图表展示了不同字符集之间的转换过程,并针对中文乱码问题提供了有效的解决方案。文章深入探讨了字符集配置、数据迁移和兼容性问题,为数据库管理员和开发人员提供了实用的参考和指导。 ... [详细]
  • NoSQL数据库,即非关系型数据库,有时也被称作Not Only SQL,是一种区别于传统关系型数据库的管理系统。这类数据库设计用于处理大规模、高并发的数据存储与查询需求,特别适用于需要快速读写大量非结构化或半结构化数据的应用场景。NoSQL数据库通过牺牲部分一致性来换取更高的可扩展性和性能,支持分布式部署,能够有效应对互联网时代的海量数据挑战。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • 小王详解:内部网络中最易理解的NAT原理剖析,挑战你的认知极限
    小王详解:内部网络中最易理解的NAT原理剖析,挑战你的认知极限 ... [详细]
  • 提升MySQL数据库架构性能的策略与方法
    为了提升MySQL数据库架构的性能,本文探讨了多种策略与方法。首先,分析了影响数据库性能的关键因素,并详细阐述了数据库结构优化的重要性。接着,介绍了数据库设计的基本步骤,包括第一、第二和第三范式的应用,以及反范式化设计的场景。此外,还讨论了数据库物理设计的关键要素,如表定义、索引设计和存储引擎选择,以确保高效的查询响应和数据管理。 ... [详细]
  • 本文回顾了作者在求职阿里和腾讯实习生过程中,从最初的迷茫到最后成功获得Offer的心路历程。文中不仅分享了个人的面试经历,还提供了宝贵的面试准备建议和技巧。 ... [详细]
  • 解决ADODB连接Access时出现80004005错误的方法
    本文详细介绍了如何解决在使用ADODB连接Access数据库时遇到的80004005错误,包括错误原因分析和具体的解决步骤。 ... [详细]
  • 本文详细介绍了使用 Python 进行 MySQL 和 Redis 数据库操作的实战技巧。首先,针对 MySQL 数据库,通过 `pymysql` 模块展示了如何连接和操作数据库,包括建立连接、执行查询和更新等常见操作。接着,文章深入探讨了 Redis 的基本命令和高级功能,如键值存储、列表操作和事务处理。此外,还提供了多个实际案例,帮助读者更好地理解和应用这些技术。 ... [详细]
  • 开发心得:利用 Redis 构建分布式系统的轻量级协调机制
    开发心得:利用 Redis 构建分布式系统的轻量级协调机制 ... [详细]
  • Linux学习精华:程序管理、终端种类与命令帮助获取方法综述 ... [详细]
  • 为何Serverless将成为未来十年的主导技术领域?
    为何Serverless将成为未来十年的主导技术领域? ... [详细]
author-avatar
拍友2502883387
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有