热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

冒泡排序、快速排序和堆排序的时间复杂度是多少

冒泡排序的时间复杂度:最好情况是“O(n)”,最坏情况是“O(n2)”。快速排序的的时间复杂度:最好情况是“O(nlogn)”,最坏情况是“O(n2)”。堆排序的时间复杂度是“O(nlogn)”。

冒泡排序的时间复杂度:最好情况是“O(n)”,最坏情况是“O(n2)”。快速排序的的时间复杂度:最好情况是“O(nlogn)”,最坏情况是“O(n2)”。堆排序的时间复杂度是“O(nlogn)”。

稳定,因为if判断不成立,就不会交换顺序,不会交换相同元素

  • 冒泡排序它在所有排序算法中最简单。然而, 从运行时间的角度来看,冒泡排序是最差的一个,它的复杂度是O(n2)

  • 冒泡排序比较任何两个相邻的项,如果第一个比第二个大,则交换它们。元素项向上移动至正确的顺序,就好像气泡升至表面一样,冒泡排序因此得名。

  • 交换时,我们用一个中间值来存储某一交换项的值。其他排序法也会用到这个方法,因此我 们声明一个方法放置这段交换代码以便重用。使用ES6(ECMAScript 2015)**增强的对象属性——对象数组的解构赋值语法,**这个函数可以写成下面 这样:

[array[index1], array[index2]] = [array[index2], array[index1]];

具体实现:

function bubbleSort(arr) {
  for (let i = 0; i  arr[j + 1]) {//如果前一位大于后一位
        [arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];//交换位置
      }
    }
  }
  return arr;
}

快速排序

时间复杂度
最好的情况:每一次base值都刚好平分整个数组,O(nlogn)
最坏的情况:每一次base值都是数组中的最大/最小值,O(n2)

空间复杂度
快速排序是递归的,需要借助栈来保存每一层递归的调用信息,所以空间复杂度和递归树的深度一致
最好的情况:每一次base值都刚好平分整个数组,递归树的深度O(logn)
最坏的情况:每一次base值都是数组中的最大/最小值,递归树的深度O(n)

稳定性
快速排序是不稳定的,因为可能会交换相同的关键字。
快速排序是递归的,
特殊情况:left>right,直接退出。

步骤:

(1) 首先,从数组中选择中间一项作为主元base,一般取第一个值

(2) 创建两个指针,左边一个指向数组第一个项,右边一个指向数组最后一个项。移动右指针直到找到一个比主元小的元素,接着,移动左指 针直到我们找到一个比主元大的元素,然后交 换它们,重复这个过程,直到左指针遇见了右指针。这个过程将使得比主元小的值都排在主元之前,而比主元大的值都排在主元之后。这一步叫作划分操作

(3)然后交换主元和指针停下来的位置的元素(等于说是把这个元素归位,这个元素左边的都比他小,右边的都比他大,这个位置就是他最终的位置)

(4) 接着,算法对划分后的小数组(较主元小的值组成的子数组,以及较主元大的值组成的 子数组)重复之前的两个步骤(递归方法),

递归的出口为left/right=i,也就是:

left>i-1 / i+1>right

此时,子数组数组已排序完成。

归位示意图:

具体实现:

function quicksort(arr, left, right) {
  if (left > right) {
    return;
  }
  var i = left,
    j = right,
    base = arr[left]; //基准总是取序列开头的元素
  //   var [base, i, j] = [arr[left], left, right]; //以left指针元素为base
  while (i != j) {
    //i=j,两个指针相遇时,一次排序完成,跳出循环
    // 因为每次大循环里面的操作都会改变i和j的值,所以每次循环/操作前都要判断是否满足i= base) {
      //寻找小于base的右指针元素a,跳出循环,否则左移一位
      j--;
    }
    while (i 

参考:https://www.cnblogs.com/venoral/p/5180439.html

堆排序

堆的概念

  • 堆是一个完全二叉树。
  • 完全二叉树: 二叉树除开最后一层,其他层结点数都达到最大,最后一层的所有结点都集中在左边(左边结点排列满的情况下,右边才能缺失结点)。
  • 大顶堆:根结点为最大值,每个结点的值大于或等于其孩子结点的值。
  • 小顶堆:根结点为最小值,每个结点的值小于或等于其孩子结点的值。
  • 堆的存储: 堆由数组来实现,相当于对二叉树做层序遍历。如下图:
    堆排序是不稳定的,因为可能会交换相同的子结点。

    步骤一:建堆

    • 以升序遍历为例子,需要先将将初始二叉树转换成大顶堆,要求满足:树中任一非叶子结点大于其左右孩子
    • 实质上是调整数组元素的位置,不断比较,做交换操作。
    • 找到第一个非叶子结点——Math.floor(arr.length / 2 - 1),从后往前依次遍历
    • 对每一个结点,检查结点和子结点的大小关系,调整成大根堆
    // 建立大顶堆
    function buildHeap(arr) {
      //从最后一个非叶子节点开始,向前遍历,
      for (let i = Math.floor(arr.length / 2 - 1); i >= 0; i--) {
        headAdjust(arr, i, arr.length); //对每一个节点都调整堆,使其满足大顶堆规则
      }
    }

    步骤二:调整指定结点形成大根堆

    • 建立childMax指针指向child最大值节点,初始值为2 * cur + 1,指向左节点
    • 当左节点存在时(左节点索引小于数组length),进入循环,递归调整所有节点位置,直到没有左节点为止(cur指向一个叶结点为止),跳出循环,遍历结束
    • 每次循环,先判断右节点存在时,右节点是否大于左节点,是则改变childMax的指向
    • 然后判断cur根节点是否大于childMax,
    • 大于的话,说明满足大顶堆规律,不需要再调整,跳出循环,结束遍历
    • 小于的话,说明不满足大顶堆规律,交换根节点和子结点,
    • 因为交换了节点位置,子结点可能会不满足大顶堆顺序,所以还要判断子结点然后,改变curchildMax指向子结点,继续循环判断。

    //从输入节点处调整堆
    function headAdjust(arr, cur, len) {
      let intialCur = arr[cur]; //存放最初始的
      let childMax = 2 * cur + 1; //指向子树中较大的位置,初始值为左子树的索引
    
      //子树存在(索引没超过数组长度)而且子树值大于根时,此时不符合大顶堆结构,进入循环,调整堆的结构
      while (childMax 

    步骤三:利用堆进行排序

    • 从后往前遍历大顶堆(数组),交换堆顶元素a[0]和当前元素a[i]的位置,将最大值依次放入数组末尾。
    • 每交换一次,就要重新调整一下堆,从根节点开始,调整根节点~i-1个节点(数组长度为i),重新生成大顶堆
    // 堆排序
    function heapSort(arr) {
      if (arr.length <= 1) return arr;
      //构建大顶堆
      buildHeap(arr);
      //从后往前遍历,
      for (let i = arr.length - 1; i >= 0; i--) {
        swap(arr, i, 0); //交换最后位置和第一个位置(堆顶最大值)的位置
        headAdjust(arr, 0, i); //调整根节点~i-1个节点,重新生成大顶堆
      }
      return arr;
    }

    完整代码:

    // 交换数组元素
    function swap(a, i, j) {
      [a[i], a[j]] = [a[j], a[i]];
    }
    //从输入节点处调整堆
    function headAdjust(arr, cur, len) {
      let intialCur = arr[cur]; //存放最初始的
      let childMax = 2 * cur + 1; //指向子树中较大的位置,初始值为左子树的索引
    
      //子树存在(索引没超过数组长度)而且子树值大于根时,此时不符合大顶堆结构,进入循环,调整堆的结构
      while (childMax = 0; i--) {
        headAdjust(arr, i, arr.length); //对每一个节点都调整堆,使其满足大顶堆规则
      }
    }
    // 堆排序
    function heapSort(arr) {
      if (arr.length <= 1) return arr;
      //构建大顶堆
      buildHeap(arr);
      //从后往前遍历,
      for (let i = arr.length - 1; i >= 0; i--) {
        swap(arr, i, 0); //交换最后位置和第一个位置(堆顶最大值)的位置
        headAdjust(arr, 0, i); //调整根节点~i-1个节点,重新生成大顶堆
      }
      return arr;
    }

    更多编程相关知识,请访问:编程视频!!

    以上就是冒泡排序、快速排序和堆排序的时间复杂度是多少的详细内容,更多请关注其它相关文章!


推荐阅读
  • 本文详细介绍了 BERT 模型中 Transformer 的 Attention 机制,包括其原理、实现代码以及在自然语言处理中的应用。通过结合多个权威资源,帮助读者全面理解这一关键技术。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • QBlog开源博客系统:Page_Load生命周期与参数传递优化(第四部分)
    本教程将深入探讨QBlog开源博客系统的Page_Load生命周期,并介绍一种简洁的参数传递重构方法。通过视频演示和详细讲解,帮助开发者更好地理解和应用这些技术。 ... [详细]
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 本文探讨了如何像程序员一样思考,强调了将复杂问题分解为更小模块的重要性,并讨论了如何通过妥善管理和复用已有代码来提高编程效率。 ... [详细]
  • python的交互模式怎么输出名文汉字[python常见问题]
    在命令行模式下敲命令python,就看到类似如下的一堆文本输出,然后就进入到Python交互模式,它的提示符是>>>,此时我们可以使用print() ... [详细]
  • 火星商店问题:线段树分治与持久化Trie树的应用
    本题涉及编号为1至n的火星商店,每个商店有一个永久商品价值v。操作包括每天在指定商店增加一个新商品,以及查询某段时间内某些商店中所有商品(含永久商品)与给定密码值的最大异或结果。通过线段树分治和持久化Trie树来高效解决此问题。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 本文总结了汇编语言中第五至第八章的关键知识点,涵盖间接寻址、指令格式、安全编程空间、逻辑运算指令及数据重复定义等内容。通过详细解析这些内容,帮助读者更好地理解和应用汇编语言的高级特性。 ... [详细]
  • 探讨如何高效使用FastJSON进行JSON数据解析,特别是从复杂嵌套结构中提取特定字段值的方法。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文详细介绍了如何使用Maven高效管理多模块项目,涵盖项目结构设计、依赖管理和构建优化等方面。通过具体的实例和配置说明,帮助开发者更好地理解和应用Maven在复杂项目中的优势。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
author-avatar
心若在梦就在_2012
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有