热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

马尔可夫决策过程MarkovDecisionProcess,MDPKintoki

Originalurl:http:www.tuicool.comarticlesb6BjAva1.马尔可夫模型的几类子模型我想大家一定听说过马尔科夫链(MarkovChain)&

Original url:

http://www.tuicool.com/articles/b6BjAva

1. 马尔可夫模型的几类子模型

我想大家一定听说过马尔科夫链(Markov Chain), 搞机器学习的也都知 道隐马尔可夫模型(Hidden Markov Model,HMM)。它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统 的下个状态只与当前状态信息有关,而与更早之前的状态无关。

马尔可夫决策过程(MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关。还是举下棋的例子,当我们在某个局面(状态s)走了一步(动作a),这时对手的选择(导致下个状态s’)我们是不能确定的,但是他的选择只和s和a有关,而不用考虑更早之前的状态和动作,即s’是根据s和a随机生成的。

我们用一个二维表格表示一下,各种马尔可夫子模型的关系就很清楚了:

不考虑动作 考虑动作
状态完全可见 马尔科夫链(MC) 马尔可夫决策过程(MDP)
状态不完全可见 隐马尔可夫模型(HMM) 不完全可观察马尔可夫决策过程(POMDP)

2. 马尔可夫决策过程

一个马尔可夫决策过程由一个四元组构成(S, A, P sa , R)   [ 注]

  • S: 表示状态集(states)
  • A:表示一组动作(actions)
  • P sa : 表示状态转移概率。P sa  表示的是在当前s ∈ S状态下,经过a ∈ A作用后,会转移到的其他状态的概率分布情况。比如,在状态s下执行动作a,转移到s’的概率可以表示为p(s’|s,a)
  • R: S×A→ℝ,R是回报函数(reward  function),回报函数有时也写作状态S的函数(只与S有关),这样的话,R可以简化为R: S→ℝ。

MDP 的动态过程如下:某个智能体(agent)的初始状态为s 0 ,然后从 A 中挑选一个动作a 0 执行,执行后,agent 按P sa 概率随机转移到了下一个s 1 状态,s 1 ∈ P s 0a 0。然后再执行一个动作a 1 ,就转移到了s 2 ,接下来再执行a 2 …,我们可以用下面的图表示状态转移的过程。

如果回报r是根据状态s和动作a得到的,则MDP还可以表示成下图:

3. 值函数(value function)与贝尔曼方程(Bellman equation)

上篇我们提到增强学习学到的是一个从环境状态到动作的映射(即行为策略),记为策略π: S→A。而增强学习往往又具有延迟回报的特点: 如果在第n步输掉了棋,那么只有状态s n 和动作a n 获得了立即回报r(s n ,a n )=-1,前面的所有状态立即回报均为0。所以对于之前的任意状态s和动作a,立即回报函数r(s,a)无法说明策略的好坏。因而需要定义值函数(value function,又叫效用函数)来表明当前状态下策略π的长期影响。

常见的值函数有以下三种:

其中

a)是采用策略π的情况下未来有限h步的期望立即回报总和;

b)是采用策略π的情况下期望的平均回报;

c)是值函数最常见的形式,式中γ∈[0,1]称为折合因子,表明了未来的回报相对于当前回报的重要程度。特别的,γ=0时,相当于只考虑立即不考虑长期回报,γ=1时,将长期回报和立即回报看得同等重要。接下来我们主要讨论的是第三种形式

定义状态值函数(值函数)如下:

定义动作值函数(Q函数)如下:

根据动态规划相关理论,给定MDP模型M=(S, A, P, γ, R)和策略π:S→A,则状态值函数V π 和动作值函数Q π 满足以下的贝尔曼方程:

而最优策略可以由下式表示:

即我们寻找的是在任意初始条件s下,能够最大化值函数的策略π*。

与最优策略π*对应的状态值函数V*与动作值函数Q*之间存在如下关系:

  

4. 立即回报,(状态)值函数,Q函数的例子

上面的概念可能描述得不太清晰,接下来举例说明,如图所示是一个格子世界,我们假设agent从左下角的start点出发,右上角为目标位置,称为吸收状态(Absorbing state),对于进入吸收态的动作,我们给予立即回报100,对其他动作则给予0回报,折合因子γ的值我们选择0.9。

1.立即回报r(s,a)如下所示,每个格子代表一个状态s,箭头则代表动作a,旁边的数字代表立即回报,可以看到只有进入目标位置的动作获得了回报100,其他动作都获得了0回报。

 

2. Q(s,a)值如下所示

3. 值函数V(s)如下所示,对比上图可以看到 

至此我们了解了马尔可夫决策过程的基本概念,知道了增强学习的目标(获得最佳策略π*),下一篇开始介绍求解最优策略的方法。

发现写东西还是蛮辛苦的,希望对大家有用。另外自己也比较菜,没写对的地方欢迎指出哈~~

[注]采用折合因子作为值函数的MDP也可以定义为五元组M=(S, A, P, γ, R)。也有的书上把值函数作为一个因子定义五元组。还有定义为三元组的,不过MDP的基本组成元素是不变的。

参考资料:

[1] R.Sutton et al. Reinforcement learning: An introduction , 1998

[2] T.Mitchell. 《机器学习》,2003

[3] 金卓军,逆向增强学习和示教学习算法研究及其在智能机器人中的应用[D],2011

[4] Oliver Sigaud et al,Markov Decision Process in Artificial Intelligence[M], 2010



推荐阅读
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 高效解决应用崩溃问题!友盟新版错误分析工具全面升级
    友盟推出的最新版错误分析工具,专为移动开发者设计,提供强大的Crash收集与分析功能。该工具能够实时监控App运行状态,快速发现并修复错误,显著提升应用的稳定性和用户体验。 ... [详细]
  • 深入探讨CPU虚拟化与KVM内存管理
    本文详细介绍了现代服务器架构中的CPU虚拟化技术,包括SMP、NUMA和MPP三种多处理器结构,并深入探讨了KVM的内存虚拟化机制。通过对比不同架构的特点和应用场景,帮助读者理解如何选择最适合的架构以优化性能。 ... [详细]
  • 配置Windows操作系统以确保DAW(数字音频工作站)硬件和软件的高效运行可能是一个复杂且令人沮丧的过程。本文提供了一系列专业建议,帮助你优化Windows系统,确保录音和音频处理的流畅性。 ... [详细]
  • 导航栏样式练习:项目实例解析
    本文详细介绍了如何创建一个具有动态效果的导航栏,包括HTML、CSS和JavaScript代码的实现,并附有详细的说明和效果图。 ... [详细]
  • 本文介绍了如何使用JQuery实现省市二级联动和表单验证。首先,通过change事件监听用户选择的省份,并动态加载对应的城市列表。其次,详细讲解了使用Validation插件进行表单验证的方法,包括内置规则、自定义规则及实时验证功能。 ... [详细]
  • 本文介绍了一款用于自动化部署 Linux 服务的 Bash 脚本。该脚本不仅涵盖了基本的文件复制和目录创建,还处理了系统服务的配置和启动,确保在多种 Linux 发行版上都能顺利运行。 ... [详细]
  • 深入解析Spring Cloud Ribbon负载均衡机制
    本文详细介绍了Spring Cloud中的Ribbon组件如何实现服务调用的负载均衡。通过分析其工作原理、源码结构及配置方式,帮助读者理解Ribbon在分布式系统中的重要作用。 ... [详细]
  • 尽管某些细分市场如WAN优化表现不佳,但全球运营商路由器和交换机市场持续增长。根据最新研究,该市场预计在2023年达到202亿美元的规模。 ... [详细]
  • 本文探讨了 Spring Boot 应用程序在不同配置下支持的最大并发连接数,重点分析了内置服务器(如 Tomcat、Jetty 和 Undertow)的默认设置及其对性能的影响。 ... [详细]
  • 实体映射最强工具类:MapStruct真香 ... [详细]
  • 深入解析 Spring Security 用户认证机制
    本文将详细介绍 Spring Security 中用户登录认证的核心流程,重点分析 AbstractAuthenticationProcessingFilter 和 AuthenticationManager 的工作原理。通过理解这些组件的实现,读者可以更好地掌握 Spring Security 的认证机制。 ... [详细]
author-avatar
wjw0000
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有