热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

洛谷P1133教主的花园题解

通往题目的大门进入正题,需要求最大观赏价值,那么用于dp的f数组首先肯定要有两维,第一维i表示第i个位置,第二维j表示种第j

       通往题目的大门

       进入正题,需要求最大观赏价值,那么用于dp的f数组首先肯定要有两维,第一维i表示第i个位置,第二维j表示种第j种树(我们不妨设10,20,30这三种树为1,2,3),然后又发现,第i个位置能种什么树,不单单跟上一个位置有关,还跟上上个位置有关,那这样调用两位去dp显得十分复杂,于是我们再开一维,表示这个位置的树比上一个位置的树要高还是要低(0表示低,1表示高),于是,我们就可以写出dp方程:

f[i][1][0]=maxx(f[i-1][2][1],f[i-1][3][1])+a[i].x;//第i个位置种第1种树,那么它肯定比上一棵树要矮,所以第3维是0,于是看上一棵树(第i-1棵)是2还是3,因为第i-1棵比第i棵树要高,那么他一定也比第i-2棵树要高,所以他们的第3维都是1,记得后面还要加上当前这棵树的贡献
f[i][2][0]=f[i-1][3][1]+a[i].y;//如果种2并且小于前一种,那前一种只能种3
f[i][2][1]=f[i-1][1][0]+a[i].y;//下面这两行类似
f[i][3][1]=maxx(f[i-1][1][0],f[i-1][2][0])+a[i].z;

       做完了?不存在的。(告诉你们个大幂幂这个做法在洛谷上70分)

       仔细想想,发现这个做法只能满足线型地种树,也就是一排种过去,但是,题目要求是环形,也就是说,我们需要处理头和尾的问题,所以,我们再加一维,表示第一个位置种的是什么树。

       可以发现,第3~n-1个位置种什么树跟第一个位置种什么树然而并没有什么关系,只要保证他们第四维相等就可以照常转移了,于是我们稍稍修改一下上面的代码,加上第四维,就得出这样一个东西:

for(int j&#61;1;j<&#61;3;j&#43;&#43;)
{f[i][1][0][j]&#61;maxx(f[i-1][2][1][j],f[i-1][3][1][j])&#43;a[i].x;f[i][2][0][j]&#61;f[i-1][3][1][j]&#43;a[i].y;f[i][2][1][j]&#61;f[i-1][1][0][j]&#43;a[i].y;f[i][3][1][j]&#61;maxx(f[i-1][1][0][j],f[i-1][2][0][j])&#43;a[i].z;
}

       代码的核心部分就是这样了&#xff0c;然后再初始化一下第一位

       初始化第一个位置&#xff1a;

f[1][1][0][1]&#61;a[1].x;//注意第2维一定和第4维是一样的&#xff0c;这段初始化也没啥不好理解的&#xff0c;注释就不打啦
f[1][2][0][2]&#61;a[1].y&#xff1b;
f[1][2][1][2]&#61;a[1].y;
f[1][3][1][3]&#61;a[1].z;

        总体代码&#xff1a;

#include
#include int f[100010][4][2][4];
struct node{int x,y,z;};
node a[100010];
int n;
inline int maxx(int x,int y){return x>y?x:y;}int main()
{scanf("%d",&n);for(int i&#61;1;i<&#61;n;i&#43;&#43;)scanf("%d %d %d",&a[i].x,&a[i].y,&a[i].z);f[1][1][0][1]&#61;a[1].x;f[1][2][0][2]&#61;a[1].y;f[1][2][1][2]&#61;a[1].y;f[1][3][1][3]&#61;a[1].z;for(int i&#61;2;i<&#61;n;i&#43;&#43;){for(int j&#61;1;j<&#61;3;j&#43;&#43;){f[i][1][0][j]&#61;maxx(f[i-1][2][1][j],f[i-1][3][1][j])&#43;a[i].x;f[i][2][0][j]&#61;f[i-1][3][1][j]&#43;a[i].y;f[i][2][1][j]&#61;f[i-1][1][0][j]&#43;a[i].y;f[i][3][1][j]&#61;maxx(f[i-1][1][0][j],f[i-1][2][0][j])&#43;a[i].z;}}printf("%d",maxx(maxx(maxx(maxx(maxx(f[n][1][0][2],f[n][1][0][3]),f[n][2][0][3]),f[n][2][1][1]),f[n][3][1][1]),f[n][3][1][2]));//最后从所有可能的情况中选择最大值输出
}

 


推荐阅读
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • 本文详细探讨了KMP算法中next数组的构建及其应用,重点分析了未改良和改良后的next数组在字符串匹配中的作用。通过具体实例和代码实现,帮助读者更好地理解KMP算法的核心原理。 ... [详细]
  • UNP 第9章:主机名与地址转换
    本章探讨了用于在主机名和数值地址之间进行转换的函数,如gethostbyname和gethostbyaddr。此外,还介绍了getservbyname和getservbyport函数,用于在服务器名和端口号之间进行转换。 ... [详细]
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • 本文详细探讨了VxWorks操作系统中双向链表和环形缓冲区的实现原理及使用方法,通过具体示例代码加深理解。 ... [详细]
  • golang常用库:配置文件解析库/管理工具viper使用
    golang常用库:配置文件解析库管理工具-viper使用-一、viper简介viper配置管理解析库,是由大神SteveFrancia开发,他在google领导着golang的 ... [详细]
  • 本题探讨了一种字符串变换方法,旨在判断两个给定的字符串是否可以通过特定的字母替换和位置交换操作相互转换。核心在于找到这些变换中的不变量,从而确定转换的可能性。 ... [详细]
  • 本文介绍如何使用Objective-C结合dispatch库进行并发编程,以提高素数计数任务的效率。通过对比纯C代码与引入并发机制后的代码,展示dispatch库的强大功能。 ... [详细]
  • Java 类成员初始化顺序与数组创建
    本文探讨了Java中类成员的初始化顺序、静态引入、可变参数以及finalize方法的应用。通过具体的代码示例,详细解释了这些概念及其在实际编程中的使用。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • 本文探讨了 C++ 中普通数组和标准库类型 vector 的初始化方法。普通数组具有固定长度,而 vector 是一种可扩展的容器,允许动态调整大小。文章详细介绍了不同初始化方式及其应用场景,并提供了代码示例以加深理解。 ... [详细]
  • 本实验主要探讨了二叉排序树(BST)的基本操作,包括创建、查找和删除节点。通过具体实例和代码实现,详细介绍了如何使用递归和非递归方法进行关键字查找,并展示了删除特定节点后的树结构变化。 ... [详细]
  • 本文详细介绍了C语言中链表的两种动态创建方法——头插法和尾插法,包括具体的实现代码和运行示例。通过这些内容,读者可以更好地理解和掌握链表的基本操作。 ... [详细]
  • 深入理解Java泛型:JDK 5的新特性
    本文详细介绍了Java泛型的概念及其在JDK 5中的应用,通过具体代码示例解释了泛型的引入、作用和优势。同时,探讨了泛型类、泛型方法和泛型接口的实现,并深入讲解了通配符的使用。 ... [详细]
author-avatar
淘宝_韩版女装铺
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有