数据规模的比较 (1)amazon.com:over 29 million customers, several items(ours) (2)MovieLens:35000 customers and 3000 items.[4] (3)EachMovie: 4000 customers and 1600 items. [3]
[1] J.B. Schafer, J.A. Konstan, and J. Reidl, “E-Commerce Recommendation Applications,” Data Mining and Knowledge Discovery, Kluwer Academic, 2001, pp. 115-153. [3] J. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of Predictive Algorithms for Collaborative Filtering,” Proc. 14th Conf. Uncertainty in Artificial Intelligence, Morgan Kaufmann, 1998, pp. 43-52. [4] B.M. Sarwarm et al., “Analysis of Recommendation Algorithms for E-Commerce,” ACM Conf. Electronic Commerce, ACM Press, 2000, pp.158-167. [5] K. Goldberg et al., “Eigentaste: A Constant Time Collaborative Filtering Algorithm,” Information Retrieval J., vol. 4, no. 2, July 2001, pp. 133-151. [8] M. Balabanovic and Y. Shoham, “Content-Based Collaborative Recommendation,” Comm. ACM, Mar. 1997, pp. 66-72. [9] G.D. Linden, J.A. Jacobi, and E.A. Benson, Collaborative Recommendations Using Item-to-Item Similarity Mappings, US Patent 6,266,649 (to Amazon.com), Patent and Trademark Office, Washington, D.C., 2001. [10] B.M. Sarwar et al., “Item-Based Collaborative Filtering Recommendation Algorithms,” 10th Int’l World Wide Web Conference, ACM Press, 2001, pp. 285-295.
尽管今日情绪低落,我在音乐库中反复筛选,最终还是选择了《People Have the Power》来激励自己。这首歌不仅旋律动听,歌词也充满力量,能够带给人正能量。强烈建议大家找来聆听,体验其独特的魅力。《People Have the Power》虽然不是出自专辑《Horses》,但同样是一首不可多得的经典之作。 ...
[详细]