热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【论文泛读188】对抗自然语言词替换的鲁棒性

贴一下汇总贴:论文阅读记录论文链接:《TowardsRobustnessAgainstNaturalLanguageWordSubstitutions

贴一下汇总贴:论文阅读记录

论文链接:《Towards Robustness Against Natural Language Word Substitutions》

一、摘要

针对单词替换的鲁棒性具有定义明确且可广泛接受的形式,即使用语义相似的单词作为替换,因此它被认为是在自然语言处理中实现更广泛鲁棒性的基础。以前的防御方法通过使用l2-ball或超矩形来捕获向量空间中的单词替换,这导致扰动集不够包容或不必要的大,从而阻碍了鲁棒训练的最坏情况的模仿。本文介绍了一种新的对抗性稀疏凸组合(ASCC)方法。我们将单词替换攻击空间建模为凸包,并利用正则化项对实际替换实施扰动,从而使我们的建模更好地与离散文本空间相一致。基于ASCC方法,我们进一步提出了ASCC防御,它利用ASCC产生最坏情况的扰动,并结合了对抗训练的鲁棒性。实验表明,针对跨多模型架构的多种攻击,ASCC防御在情感分析和自然语言推理这两个主流自然语言处理任务上的鲁棒性优于当前技术水平。此外,我们还设想了一种新的针对自然语言处理鲁棒性的防御方法,在这种方法中,我们经过鲁棒训练的词向量可以插入到正常训练的模型中,并在不应用任何其他防御技术的情况下增强其鲁棒性。

二、结论

在本文中,我们提出了一种新的方法来使用凸包来捕获和防御对抗词替换。我们的方法产生的模型在数据集和架构上始终超越了现有技术。实验结果进一步表明,单词向量本身可能是脆弱的,我们的方法产生了健壮的单词向量,其可以在不应用任何其他防御技术的情况下增强鲁棒性。因此,我们希望这项工作可以成为NLP更广泛的稳健性的垫脚石。

三、模型

不同方法如何在向量空间中捕捉单词替换的可视化:
在这里插入图片描述
对抗训练过程:
在这里插入图片描述

  • 制造对手
  • 以对手为输入进行对抗训练

算法:
在这里插入图片描述


推荐阅读
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 本打算教一步步实现koa-router,因为要解释的太多了,所以先简化成mini版本,从实现部分功能到阅读源码,希望能让你好理解一些。希望你之前有读过koa源码,没有的话,给你链接 ... [详细]
  • 自然语言处理(NLP)——LDA模型:对电商购物评论进行情感分析
    目录一、2020数学建模美赛C题简介需求评价内容提供数据二、解题思路三、LDA简介四、代码实现1.数据预处理1.1剔除无用信息1.1.1剔除掉不需要的列1.1.2找出无效评论并剔除 ... [详细]
  • 第三届人工智能、网络与信息技术国际学术会议(AINIT 2022)
    20223rdInternationalSeminaronArtificialIntelligence,NetworkingandInformationTechnology第三届 ... [详细]
  • 如何高效学习鸿蒙操作系统:开发者指南
    本文探讨了开发者如何更有效地学习鸿蒙操作系统,提供了来自行业专家的建议,包括系统化学习方法、职业规划建议以及具体的开发技巧。 ... [详细]
  • 本文提供了一个详尽的前端开发资源列表,涵盖了从基础入门到高级应用的各个方面,包括HTML5、CSS3、JavaScript框架及库、移动开发、API接口、工具与插件等。 ... [详细]
  • Java虚拟机及其发展历程
    Java虚拟机(JVM)是每个Java开发者日常工作中不可或缺的一部分,但其背后的运作机制却往往显得神秘莫测。本文将探讨Java及其虚拟机的发展历程,帮助读者深入了解这一关键技术。 ... [详细]
  • 视觉Transformer综述
    本文综述了视觉Transformer在计算机视觉领域的应用,从原始Transformer出发,详细介绍了其在图像分类、目标检测和图像分割等任务中的最新进展。文章不仅涵盖了基础的Transformer架构,还深入探讨了各类增强版Transformer模型的设计思路和技术细节。 ... [详细]
  • 本文详细探讨了Spring框架中遇到的NoSuchBeanDefinitionException异常,具体涉及com.thinkplatform.dao.UserLogDao Bean未定义的问题,并提供了相应的解决方案。 ... [详细]
  • 岭回归及其应用
    本文介绍了岭回归的基本原理,并通过Python中的sklearn库实现了岭回归模型。岭回归通过在代价函数中加入L2正则项,有效解决了多重共线性问题。 ... [详细]
  • 步入人工智能新时代,掌握这些关键知识点至关重要。AI技术将成为人类的重要辅助工具,不仅能够扩展和增强人类的智能,还能帮助我们实现更加卓越的成就。新一代人工智能技术的发展将为各行各业带来深远的影响,推动社会进步与创新。 ... [详细]
  • AI TIME联合2021世界人工智能大会,共探图神经网络与认知智能前沿话题
    AI TIME携手2021世界人工智能大会,共同探讨图神经网络与认知智能的最新进展。自2018年在上海首次举办以来,WAIC已成为全球AI领域的年度盛会,吸引了众多专家学者和行业领袖参与。本次大会将聚焦图神经网络在复杂系统建模、知识图谱构建及认知智能应用等方面的技术突破和未来趋势。 ... [详细]
  • 本文通过复旦大学自然语言处理课程中的一个具体案例,详细解析了中文词汇分割技术的实现方法。该案例利用Java编程语言,结合词典和算法模型,展示了如何高效地进行中文文本的词汇分割,为相关研究和应用提供了宝贵的参考。 ... [详细]
  • python绘制拟合回归散点图_机器学习之利用Python进行简单线性回归分析
    前言:在利用机器学习方法进行数据分析时经常要了解变量的相关性,有时还需要对变量进行回归分析。本文首先对人工智能机器学习深度学习、相关分析因果分析回归分析 ... [详细]
author-avatar
hy11011_847
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有