热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

【Day1】对抗神经网络GAN

一、1、生成模型(G)+判别模型(D)2、输入的只有真实样本集(无标签)3、单独交替迭代训练。在训练生成网络的时候,我们需要联合判别网络一起才能达到训练

一、

1、生成模型(G)+判别模型(D)

2、输入的只有真实样本集(无标签)

3、单独交替迭代训练。在训练生成网络的时候,我们需要联合判别网络一起才能达到训练的目的,对于生成网络的训练其实是对生成-判别网络串接的训练。

    a.生成了假样本,把这些假样本的标签都设置为1,也就是认为这些假样本在生成网络训练的时候是真样本(迷惑判别器的目的,也才能使得生成的假样本逐渐逼近为正样本);

    b.在对于生成网络的训练,我们有了样本集(只有假样本集,没有真样本集),有了对应的label(全为1)。(在训练这个串接的网络的时候,一个很重要的操作就是不要判别网络的参数发生变化,也就是不让它参数发生更新,只是把误差一直传,传到生成网络那块后更新生成网络的参数。这样就完成了生成网络的训练了

4、在完成生成网络训练后,又有了新的真假样本集(其实是新的假样本集),重复上述过程了。把这个过程称作为单独交替训练;

5、定义一个迭代次数,交替迭代到一定次数后停止即可。

二、


公式代表的是最大最小优化,先拆解优化判别网络D,再优化G。

优化D:


第二项改成1-D(G(z)),两者合起来就是越大越好。

优化G:


同样在优化G的时候,和真样本无关,所以 第一项直接却掉了,只有假样本这个时候是希望假样本的标签是1的,所以是D(G(z))越大越好,但是呢为了统一成1-D(G(z))的形式,那么只能是最小化1-D(G(z))。

文章标签:  GAN

推荐阅读
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本题要求将由小写字母组成的字符串划分为多个片段,确保每个字母只出现在一个片段中。目标是生成尽可能多的片段,并返回每个片段的长度列表。本文将详细解释问题描述、解题思路及代码实现。 ... [详细]
  • 本文介绍如何调整Element UI组件的边框样式,以确保内容与边框之间有足够的间距,并展示如何通过CSS实现更好的布局效果。 ... [详细]
  • 卷积神经网络(CNN)基础理论与架构解析
    本文介绍了卷积神经网络(CNN)的基本概念、常见结构及其各层的功能。重点讨论了LeNet-5、AlexNet、ZFNet、VGGNet和ResNet等经典模型,并详细解释了输入层、卷积层、激活层、池化层和全连接层的工作原理及优化方法。 ... [详细]
  • 本文将介绍网易NEC CSS框架的规范及其在实际项目中的应用。通过详细解析其分类和命名规则,探讨如何编写高效、可维护的CSS代码,并分享一些实用的学习心得。 ... [详细]
  • Unity编辑器插件:NGUI资源引用检测工具
    本文介绍了一款基于NGUI的资源引用检测工具,该工具能够帮助开发者快速查找和管理项目中的资源引用。其功能涵盖Atlas/Sprite、字库、UITexture及组件的引用检测,并提供了替换和修复功能。文末提供源码下载链接。 ... [详细]
  • 本文将深入探讨如何在不依赖第三方库的情况下,使用 React 处理表单输入和验证。我们将介绍一种高效且灵活的方法,涵盖表单提交、输入验证及错误处理等关键功能。 ... [详细]
  • 探讨如何从数据库中按分组获取最大N条记录的方法,并分享新年祝福。本文提供多种解决方案,适用于不同数据库系统,如MySQL、Oracle等。 ... [详细]
  • 本文介绍了如何使用 Python 的 Matplotlib 和 Pandas 库进行数据可视化。通过示例代码展示了折线图、柱状图和水平柱状图的创建方法,并解释了图表参数设置的具体细节。 ... [详细]
  • 利用生成对抗网络生成多标签离散电子健康记录
    本文探讨了通过生成对抗网络(GAN)生成合成电子健康记录(EHR)的方法,旨在解决隐私保护问题并促进医学研究。论文地址为:https://arxiv.org/abs/1703.06490v1。该方法通过生成高维离散变量的综合EHR数据,显著提升了医学研究中的数据可用性和安全性。 ... [详细]
  • 本文探讨了如何在iOS开发环境中,特别是在Xcode 6.1中,设置和应用自定义文本样式。我们将详细介绍实现方法,并提供一些实用的技巧。 ... [详细]
  • Kubernetes 持久化存储与数据卷详解
    本文深入探讨 Kubernetes 中持久化存储的使用场景、PV/PVC/StorageClass 的基本操作及其实现原理,旨在帮助读者理解如何高效管理容器化应用的数据持久化需求。 ... [详细]
  • 本文介绍如何利用 Python 中的 NumPy 和 Matplotlib 库,从 NumPy 数组中绘制线图。通过具体的代码示例和详细解释,帮助读者理解并掌握这一技能。 ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • 本文介绍如何使用.NET Framework开发一个简单的Windows Forms应用程序,以实现图形在窗口内的动态移动。文章详细描述了代码结构、关键逻辑以及最终的实现效果。 ... [详细]
author-avatar
蓝俊明伟伦淑舜
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有