热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Linux网卡驱动相关——01

参考:1.深入理解Linux网络技术内幕PartIII2.EssentialLinuxDeviceDriverChap153.Linux内核源码剖析——TCPIP实现
 
参考:1. 深入理解Linux网络技术内幕 PartIII
   2. Essential Linux Device Driver Chap15
     3. Linux 内核源码剖析——TCP/IP 实现
          5. rtl8139too.c 2010.4 修订
          6. Linux 内核 2.6.33
          7. google
 
当你在写一个网卡驱动的时候回接触到3个重要的数据结构:
1. struct sk_buff    sk_buff 结构贯穿整个协议栈
2. struct net_device 该结构定义了网卡驱动和协议栈之间的接口
3. I/O 总线相关的结构,比如 struct pci_dev
 
  在内核中sk_buff表示一个网络数据包,它是一个双向链表,而链表头就是sk_buff_head,在老的内核里面sk_buff会有一个list域直接指向sk_buff_head也就是链表头,现在在2.6.33里面这个域已经被删除了。而sk_buff的内存布局可以分作3个段,第一个就是sk_buff自身,第二个是linear-data buff,第三个是paged-data buff(也就是skb_shared_info)。 
  每个SKB必须能被整个链表头部快速找到。为了满足这个需求,在第一个SKB节点前面会插入另一个辅助的sk_buff_head结构的头结点,可以认为该sk_buff_head结构就是SKB链表的头结点。

struct sk_buff_head {
/* These two members must be first. */
struct sk_buff *next;
struct sk_buff *prev;__u32 qlen;
spinlock_t
lock;
};

 

下图是SKB链表:

下面来看一下sk_buff 结构:

struct sk_buff {
/* These two members must be first. */
struct sk_buff *next;
struct sk_buff *prev;//表示从属于那个socket,主要是被4层用到。
struct sock *sk;
//表示这个skb被接收的时间。
ktime_t tstamp;
//这个表示一个网络设备,当skb为输出时它表示skb将要输出的设备,当接收时,它表示输入设备。要注意,这个设备有可能会是虚拟设备(在3层以上看来)
struct net_device *dev;
///这里其实应该是dst_entry类型,不知道为什么内核要改为ul。这个域主要用于路由子系统。这个数据结构保存了一些路由相关信息
unsigned long _skb_dst;
#ifdef CONFIG_XFRM
struct sec_path *sp;
#endif
///这个域很重要,我们下面会详细说明。这里只需要知道这个域是保存每层的控制信息的就够了。
char cb[48];
///这个长度表示当前的skb中的数据的长度,这个长度即包括buf中的数据也包括切片的数据,也就是保存在skb_shared_info中的数据。这个值是会随着从一层到另一层而改变的。下面我们会对比这几个长度的。
unsigned int len,
///这个长度只表示切片数据的长度,也就是skb_shared_info中的长度。
data_len;
///这个长度表示mac头的长度(2层的头的长度)
__u16 mac_len,
///这个主要用于clone的时候,它表示clone的skb的头的长度。
hdr_len;///接下来是校验相关的域。
union {
__wsum csum;
struct {
__u16 csum_start;
__u16 csum_offset;
};
};
///优先级,主要用于QOS。
__u32 priority;
kmemcheck_bitfield_begin(flags1);
///接下来是一些标志位。
//首先是是否可以本地切片的标志。
__u8 local_df:1,
///为1说明头可能被clone。
cloned:1,
///这个表示校验相关的一个标记,表示硬件驱动是否为我们已经进行了校验(前面的blog有介绍)
ip_summed:2,
///这个域如果为1,则说明这个skb的头域指针已经分配完毕,因此这个时候计算头的长度只需要head和data的差就可以了。
nohdr:1,
///这个域不太理解什么意思。
nfctinfo:3;///pkt_type主要是表示数据包的类型,比如多播,单播,回环等等。
__u8 pkt_type:3,
///这个域是一个clone标记。主要是在fast clone中被设置,我们后面讲到fast clone时会详细介绍这个域。
fclone:2,
///ipvs拥有的域。
ipvs_property:1,
///这个域应该是udp使用的一个域。表示只是查看数据。
peeked:1,
///netfilter使用的域。是一个trace 标记
nf_trace:1;
///这个表示L3层的协议。比如IP,IPV6等等。
__be16 protocol:16;
kmemcheck_bitfield_end(flags1);
///skb的析构函数,一般都是设置为sock_rfree或者sock_wfree.
void (*destructor)(struct sk_buff *skb);///netfilter相关的域。
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
struct nf_conntrack *nfct;
struct sk_buff *nfct_reasm;
#endif
#ifdef CONFIG_BRIDGE_NETFILTER
struct nf_bridge_info *nf_bridge;
#endif///接收设备的index。
int iif;///流量控制的相关域。
#ifdef CONFIG_NET_SCHED
__u16 tc_index;
/* traffic control index */
#ifdef CONFIG_NET_CLS_ACT
__u16 tc_verd;
/* traffic control verdict */
#endif
#endifkmemcheck_bitfield_begin(flags2);
///多队列设备的映射,也就是说映射到那个队列。
__u16 queue_mapping:16;
#ifdef CONFIG_IPV6_NDISC_NODETYPE
__u8 ndisc_nodetype:
2;
#endif
kmemcheck_bitfield_end(flags2);
/* 0/14 bit hole */#ifdef CONFIG_NET_DMA
dma_COOKIE_t dma_COOKIE;
#endif
#ifdef CONFIG_NETWORK_SECMARK
__u32 secmark;
#endif
///skb的标记。
__u32 mark;///vlan的控制tag。
__u16 vlan_tci;///传输层的头
sk_buff_data_t transport_header;
///网络层的头
sk_buff_data_t network_header;
///链路层的头。
sk_buff_data_t mac_header;
///接下来就是几个操作skb数据的指针。下面会详细介绍。
sk_buff_data_t tail;
sk_buff_data_t end;
unsigned
char *head,
*data;
///这个表示整个skb的大小,包括skb本身,以及数据。
unsigned int truesize;
///skb的引用计数
atomic_t users;
};

 

sk_buff 为Linux网络层提供了高效的缓冲和流控机制。sk_buff内部包含了缓冲区中报文的信息,这些数据域,主要是下面几个:
sk_buff->head      sk_buff->tail      sk_buff->end
 
struct  sk_buff 的成员 head 指向一个已分配的空间的头部,该空间用于承载网络数据,end 指向该空间的尾部,这两个成员指针从空间创建之后,就不能被修改。data 指向分配空间中数据的头部,tail 指向数据的尾部,这两个值随着网络数据在各层之间的传递、修改,会被不断改动。所以,这四个指针指向共同的一块内存区域的不同位置,该内存区域由__alloc_skb 在创建缓冲区时创建。注意:这些都是char * 类型的指针,指向特定的内存块。
下面这张图表示了buffer从tcp层到链路层的过程中len,head,data,tail以及end的变化,通过这个图我们可以非常清晰的了解到这几个域的区别。 

可以很清楚的看到head指针为分配的buffer的起始位置,end为结束位置,而data为当前数据的起始位置,tail为当前数据的结束位置。len就是数据区的长度。 
 
然后来看transport_header,network_header以及mac_header的变化,这几个指针都是随着数据包到达不同的层次才会有对应的值,我们来看下面的图,这个图表示了当从2层到达3层对应的指针的变化。 

这里可以看到data指针会由于数据包到了三层,而跳过2层的头。这里我们就可以得到data起始真正指的是本层的头以及数据的起始位置。 
 
sk_buff 结构中有三个跟长度相关的量:len 、data_len 、truesize
其中len 是指数据包全部数据的长度,包括 data 指向的数据和 end 后面的分片的数据的总长,而 data_len
只包括分片的数据的长度。而 truesize 的最终值是 len+sizeof(struct sk_buff)。

 data 这个指针指向的位置是可变的,它有可能随着报文所处的层次而变动。当接收报文时,从网卡驱动开始,通过协议栈层层往上传送数据报,通过增加 skb->data 的值,来逐步剥离协议首部;而要发送报文时,各协议创建 sk_buff{},在经过各下层协议时,通过减少 skb->data的值来增加协议首部。
 
我们来看前面没有解释的那些域。 
我们知道tcp层的控制信息保存在tcp_skb_cb中,因此来看内核提供的宏来存取这个数据结构:

#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))

在ip层的话,我们可能会用cb来存取切片好的帧。

#define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))

 

 

转:https://www.cnblogs.com/zhuyp1015/archive/2012/08/04/2623353.html



推荐阅读
  • 李逍遥寻找仙药的迷阵之旅
    本文讲述了少年李逍遥为了救治婶婶的病情,前往仙灵岛寻找仙药的故事。他需要穿越一个由M×N个方格组成的迷阵,有些方格内有怪物,有些方格是安全的。李逍遥需要避开有怪物的方格,并经过最少的方格,找到仙药。在寻找的过程中,他还会遇到神秘人物。本文提供了一个迷阵样例及李逍遥找到仙药的路线。 ... [详细]
  • 本文介绍了解决二叉树层序创建问题的方法。通过使用队列结构体和二叉树结构体,实现了入队和出队操作,并提供了判断队列是否为空的函数。详细介绍了解决该问题的步骤和流程。 ... [详细]
  • JDK源码学习之HashTable(附带面试题)的学习笔记
    本文介绍了JDK源码学习之HashTable(附带面试题)的学习笔记,包括HashTable的定义、数据类型、与HashMap的关系和区别。文章提供了干货,并附带了其他相关主题的学习笔记。 ... [详细]
  • Android工程师面试准备及设计模式使用场景
    本文介绍了Android工程师面试准备的经验,包括面试流程和重点准备内容。同时,还介绍了建造者模式的使用场景,以及在Android开发中的具体应用。 ... [详细]
  • 深入解析Linux下的I/O多路转接epoll技术
    本文深入解析了Linux下的I/O多路转接epoll技术,介绍了select和poll函数的问题,以及epoll函数的设计和优点。同时讲解了epoll函数的使用方法,包括epoll_create和epoll_ctl两个系统调用。 ... [详细]
  • 本文介绍了设计师伊振华受邀参与沈阳市智慧城市运行管理中心项目的整体设计,并以数字赋能和创新驱动高质量发展的理念,建设了集成、智慧、高效的一体化城市综合管理平台,促进了城市的数字化转型。该中心被称为当代城市的智能心脏,为沈阳市的智慧城市建设做出了重要贡献。 ... [详细]
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • 本文讨论了clone的fork与pthread_create创建线程的不同之处。进程是一个指令执行流及其执行环境,其执行环境是一个系统资源的集合。在调用系统调用fork创建一个进程时,子进程只是完全复制父进程的资源,这样得到的子进程独立于父进程,具有良好的并发性。但是二者之间的通讯需要通过专门的通讯机制,另外通过fork创建子进程系统开销很大。因此,在某些情况下,使用clone或pthread_create创建线程可能更加高效。 ... [详细]
  • 开发笔记:实验7的文件读写操作
    本文介绍了使用C++的ofstream和ifstream类进行文件读写操作的方法,包括创建文件、写入文件和读取文件的过程。同时还介绍了如何判断文件是否成功打开和关闭文件的方法。通过本文的学习,读者可以了解如何在C++中进行文件读写操作。 ... [详细]
  • 深入理解Kafka服务端请求队列中请求的处理
    本文深入分析了Kafka服务端请求队列中请求的处理过程,详细介绍了请求的封装和放入请求队列的过程,以及处理请求的线程池的创建和容量设置。通过场景分析、图示说明和源码分析,帮助读者更好地理解Kafka服务端的工作原理。 ... [详细]
  • 先看官方文档TheJavaTutorialshavebeenwrittenforJDK8.Examplesandpracticesdescribedinthispagedontta ... [详细]
  • 本文详细介绍了git常用命令及其操作方法,包括查看、添加、提交、删除、找回等操作,以及如何重置修改文件、抛弃工作区修改、将工作文件提交到本地暂存区、从版本库中删除文件等。同时还介绍了如何从暂存区恢复到工作文件、恢复最近一次提交过的状态,以及如何合并多个操作等。 ... [详细]
  • 本文讨论了微软的STL容器类是否线程安全。根据MSDN的回答,STL容器类包括vector、deque、list、queue、stack、priority_queue、valarray、map、hash_map、multimap、hash_multimap、set、hash_set、multiset、hash_multiset、basic_string和bitset。对于单个对象来说,多个线程同时读取是安全的。但如果一个线程正在写入一个对象,那么所有的读写操作都需要进行同步。 ... [详细]
  • 本文介绍了在Android开发中使用软引用和弱引用的应用。如果一个对象只具有软引用,那么只有在内存不够的情况下才会被回收,可以用来实现内存敏感的高速缓存;而如果一个对象只具有弱引用,不管内存是否足够,都会被垃圾回收器回收。软引用和弱引用还可以与引用队列联合使用,当被引用的对象被回收时,会将引用加入到关联的引用队列中。软引用和弱引用的根本区别在于生命周期的长短,弱引用的对象可能随时被回收,而软引用的对象只有在内存不够时才会被回收。 ... [详细]
  • STL迭代器的种类及其功能介绍
    本文介绍了标准模板库(STL)定义的五种迭代器的种类和功能。通过图表展示了这几种迭代器之间的关系,并详细描述了各个迭代器的功能和使用方法。其中,输入迭代器用于从容器中读取元素,输出迭代器用于向容器中写入元素,正向迭代器是输入迭代器和输出迭代器的组合。本文的目的是帮助读者更好地理解STL迭代器的使用方法和特点。 ... [详细]
author-avatar
大侠aaaaaaaaaaa_225
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有