热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

LinuxNVMeDriver学习笔记之7:Identify初始化及命令提交过程

这篇文章紧接上回分解,在nvme_probe函数的最后一步调用nvme_reset_work进行reset操作,nvme_reset_work的主要工作

这篇文章紧接上回分解,在nvme_probe函数的最后一步调用nvme_reset_work进行reset操作,nvme_reset_work的主要工作可以概括如下几个步骤:


  1. 进入nvme_reset_work函数后先检查NVME_CTRL_RESETTING标志,来确保nvme_reset_work不会被重复进入。

  2. 调用nvme_pci_enable

  3. 调用nvme_configure_admin_queue

  4. 调用nvme_init_queue

  5. 调用nvme_alloc_admin_tags

  6. 调用nvme_init_identify

  7. 调用nvme_setup_io_queues

  8. 调用nvme_start_queues/nvme_dev_add之后,接着调用nvme_queue_scan


上篇文章中,我们解析了nvme_init_queue和nvme_alloc_admin_tags的内容,本文我们接着介绍nvme_reset_work中的其他函数。

我们来看看nvme_init_identify的内容:


int nvme_init_identify(struct nvme_ctrl *ctrl)

{

struct nvme_id_ctrl *id;

u64 cap;

int ret, page_shift;

u32 max_hw_sectors;

       // 读取NVMe协议的版本号

ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);

if (ret) {

dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);

return ret;

}

      // 读取NVMe controller寄存器CAP值

ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);

if (ret) {

dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);

return ret;

}

page_shift = NVME_CAP_MPSMIN(cap) + 12;

      // NVMe 1.1之后,支持subsystem Reset

if (ctrl->vs >= NVME_VS(1, 1, 0))

ctrl->subsystem = NVME_CAP_NSSRC(cap);

ret = nvme_identify_ctrl(ctrl, &id); //读取identify data

if (ret) {

dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);

return -EIO;

}

ctrl->vid = le16_to_cpu(id->vid);

ctrl->Oncs= le16_to_cpup(&id->oncs);

atomic_set(&ctrl->abort_limit, id->acl + 1);

ctrl->vwc = id->vwc;

ctrl->cntlid = le16_to_cpup(&id->cntlid);

memcpy(ctrl->serial, id->sn, sizeof(id->sn));

memcpy(ctrl->model, id->mn, sizeof(id->mn));

memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));

if (id->mdts)

max_hw_sectors = 1 <<(id->mdts + page_shift - 9);

else

max_hw_sectors = UINT_MAX;

ctrl->max_hw_sectors =

min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);

nvme_set_queue_limits(ctrl, ctrl->admin_q);

ctrl->sgls = le32_to_cpu(id->sgls);

ctrl->kas = le16_to_cpu(id->kas);

if (ctrl->ops->is_fabrics) {

.... // NVMe over fabrics内容省略

}

} else {

ctrl->cntlid = le16_to_cpu(id->cntlid);

}

kfree(id);

return ret;

}


从上面的code来看,主要做了两部分的工作:


  1. 调用nvme_identify_ctrl读取identify data.

  2. 调用nvme_set_queue_limits设置queue write cache的大小.

先看一下nvme_identify_ctrl的代码:


int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)

{

struct nvme_command c = { };

int error;

/* gcc-4.4.4 (at least) has issues with initializers and anon unions */

c.identify.opcode = nvme_admin_identify;

c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL);

*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);

if (!*id)

return -ENOMEM;

error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,

sizeof(struct nvme_id_ctrl));

if (error)

kfree(*id);

return error;

}


首先,nvme_identify_ctrl函数先建立identify Command(opcode=0x6), 

Identify Command下发后返回的是4KB的Identify Data Structure, 这个data structure可以描述controller,也可以描述namespace, 具体是描述什么要取决于CNS(Controller or Namespace Structure) byte. 


  • CNS=0x00h,代表描述的是Namespace data structure;

  • CNS=0x01h,代表描述的是Controller data structure;

  • CNS=0x02h,代表描述的是Namespace list;

上面代码中,我们可以看到在赋值c.identify.cns时,采用了cpu_to_le32这样的函数,因为在nvme协议里规定的一些消息格式都是按照小端存储的,但是我们的主机可能是小端的x86,也可能是大端的arm或者其他类型,用了这样的函数就可以做到主机格式和小端之间的转换,让代码更好得跨平台,这也是Linux系统强大的地方。


c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL);


nvme_identify_ctrl函数已经建立了Identify Command,驱动是怎么提交这个admin command呢?实际上,admin command的提交过程主要调用了nvme_submit_sync_cmd函数,但最终调用的函数是__nvme_submit_sync_cmd:


int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,

union nvme_result *result, void *buffer, unsigned bufflen,

unsigned timeout, int qid, int at_head, int flags)

{

struct request *req;

int ret;

req = nvme_alloc_request(q, cmd, flags, qid);

if (IS_ERR(req))

return PTR_ERR(req);

req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

if (buffer && bufflen) {

ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);

if (ret)

goto out;

}

blk_execute_rq(req->q, NULL, req, at_head);

if (result)

*result = nvme_req(req)->result;

ret = req->errors;

 out:

blk_mq_free_request(req);

return ret;

}


从上面的代码,可以看到nvme_submit_sync_cmd函数的执行过程主要有三步:


  1. 调用nvme_alloc_request函数,进一步调用blk_mq_alloc_request_hctx申请一个request_queue, 并完成相应的初始化;

  2. 如果buffer & bufflen不为0,则说明这次nvme admin命令需要传输数据,既然需要传输数据,就需要得到bio的支持, 那么就调用blk_rq_map_kern完成request queue与bio以及bio与内核空间buffer的关联。毕竟block layer并不认识内核空间或者用户空间,而只认识bio。

  3. 第三步是最后一步,也是最关键的一步。调用blk_excute_rq实现最终的命令发送。

我们先看看nvme_alloc_request的代码:


struct request *nvme_alloc_request(struct request_queue *q,

struct nvme_command *cmd, unsigned int flags, int qid)

{

struct request *req;

if (qid == NVME_QID_ANY) {

req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);

} else {

req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,

qid ? qid - 1 : 0);

}

if (IS_ERR(req))

return req;

req->cmd_type = REQ_TYPE_DRV_PRIV;

req->cmd_flags |= REQ_FAILFAST_DRIVER;

nvme_req(req)->cmd = cmd;

return req;

}


如上述代码显示,blk_mq_alloc_request_hctx申请一个request_queue并初始化之后,cmd参数,在这里也就是Identify command会传递给nvme_req。

我们再看看最关键的blk_excute_rq的代码:


int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,

   struct request *rq, int at_head)

{

DECLARE_COMPLETION_ONSTACK(wait);

char sense[SCSI_SENSE_BUFFERSIZE];

int err = 0;

unsigned long hang_check;

if (!rq->sense) {

memset(sense, 0, sizeof(sense));

rq->sense = sense;

rq->sense_len = 0;

}

rq->end_io_data = &wait;

blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);

/* Prevent hang_check timer from firing at us during very long I/O */

hang_check = sysctl_hung_task_timeout_secs;

if (hang_check)

while (!wait_for_completion_io_timeout(&wait, hang_check * (HZ/2)));

else

wait_for_completion_io(&wait);

if (rq->errors)

err = -EIO;

if (rq->sense == sense) {

rq->sense = NULL;

rq->sense_len = 0;

}

return err;

}


调用blk_execute_rq_nowait函数将request插入执行队列,调用wait_for_completion_io等待命令的完成。

 


推荐阅读
  • 本文分享了作者在使用LaTeX过程中的几点心得,涵盖了从文档编辑、代码高亮、图形绘制到3D模型展示等多个方面的内容。适合希望深入了解LaTeX高级功能的用户。 ... [详细]
  • Python网络编程:深入探讨TCP粘包问题及解决方案
    本文详细探讨了TCP协议下的粘包现象及其产生的原因,并提供了通过自定义报头解决粘包问题的具体实现方案。同时,对比了TCP与UDP协议在数据传输上的不同特性。 ... [详细]
  • 本文探讨了Linux环境下线程私有数据(Thread-Specific Data, TSD)的概念及其重要性,介绍了如何通过TSD技术避免多线程间全局变量冲突的问题,并提供了具体的实现方法和示例代码。 ... [详细]
  • 【MySQL】frm文件解析
    官网说明:http:dev.mysql.comdocinternalsenfrm-file-format.htmlfrm是MySQL表结构定义文件,通常frm文件是不会损坏的,但是如果 ... [详细]
  • 想把一组chara[4096]的数组拷贝到shortb[6][256]中,尝试过用循环移位的方式,还用中间变量shortc[2048]的方式。得出的结论:1.移位方式效率最低2. ... [详细]
  • 本课程深入探讨了 Python 中自定义序列类的实现方法,涵盖从基础概念到高级技巧的全面解析。通过实例演示,学员将掌握如何创建支持切片操作的自定义序列对象,并了解 `bisect` 模块在序列处理中的应用。适合希望提升 Python 编程技能的中高级开发者。 ... [详细]
  • 技术日志:Ansible的安装及模块管理详解 ... [详细]
  • Joomla!软件介绍【Joomla!概括介绍】国外相当知名的内容管理系统。【Joomla!基本介绍】Joomla!是一套在国外相当知名的内容管理系统(ContentManagem ... [详细]
  • Excel技巧:单元格中显示公式而非结果的解决方法
    本文探讨了在Excel中如何通过简单的方法解决单元格显示公式而非计算结果的问题,包括使用快捷键和调整单元格格式两种方法。 ... [详细]
  • Android 网络请求中的下载断点续传技术解析与实现
    本文详细解析了 Android 平台下网络请求中下载断点续传的技术原理与实现方法。断点续传技术在下载过程中尤为重要,当下载因网络中断或其他原因暂停时,该技术允许从上次中断的位置继续下载,而无需重新开始。文章重点介绍了断点续传的逻辑思路和关键实现步骤,包括如何记录下载进度、处理 HTTP 请求头以及优化下载性能。通过具体示例代码,读者可以更好地理解和应用这一技术,提高应用程序的用户体验和可靠性。 ... [详细]
  • 字符串对比竟也暗藏玄机,你是否认同?
    在探讨字符串对比技术时,本文通过两个具体案例深入剖析了其背后的复杂性与技巧。首先,案例一部分详细介绍了需求背景、分析过程及两种不同的代码实现方法,并进行了总结。接着,案例二同样从需求描述出发,逐步解析问题并提供解决方案,旨在揭示字符串处理中容易被忽视的关键细节和技术挑战。 ... [详细]
  • 本文详细探讨了Struts框架中几种常用的数据标签,包括`s:property`、`s:a`、`s:debug`、`s:include`和`s:param`。这些标签在实际开发中的应用广泛,不仅用于数据展示和链接生成,还提供了调试和模块化功能。文章分析了每个标签的基本用法及其属性配置,并结合具体示例介绍了如何进行性能优化和最佳实践。通过这些内容,开发者可以更好地理解和利用这些标签,提高开发效率和代码质量。 ... [详细]
  • 在 CentOS 7 上部署和配置 RabbitMQ 消息队列系统时,首先需要安装 Erlang,因为 RabbitMQ 是基于 Erlang 语言开发的。具体步骤包括:安装必要的依赖项,下载 Erlang 源码包(可能需要一些时间,请耐心等待),解压源码包,解决可能出现的错误,验证安装是否成功,并将 Erlang 添加到环境变量中。接下来,下载 RabbitMQ 的 tar.xz 压缩包,并进行解压和安装。确保每一步都按顺序执行,以保证系统的稳定性和可靠性。 ... [详细]
  • 注:写博客或者项目的README文档经常用到markdown语法,所以markdown的语法做了一个总结,本文是基于【markdown】基 ... [详细]
  • php性能优化分析工具XDebug大型网站调试工具_PHP
    php性能优化分析工具XDebug大型网站调试工具_PHP:一、安装配置1、下载PHP的XDebug扩展,网址:http:xdebug.org2、在Linux下编译安装XDebug ... [详细]
author-avatar
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有