热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

Keras自动下载的数据集/模型存放位置介绍

这篇文章主要介绍了Keras自动下载的数据集模型存放位置介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

Mac

# 数据集
~/.keras/datasets/

# 模型
~/.keras/models/

Linux

# 数据集
~/.keras/datasets/

Windows

# win10
C:\Users\user_name\.keras\datasets

补充知识:Keras_gan生成自己的数据,并保存模型

我就废话不多说了,大家还是直接看代码吧~

from __future__ import print_function, division
 
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import os
import matplotlib.pyplot as plt
import sys
import numpy as np
 
class GAN():
 def __init__(self):
 self.img_rows = 3
 self.img_cols = 60
 self.channels = 1
 self.img_shape = (self.img_rows, self.img_cols, self.channels)
 self.latent_dim = 100
 
 optimizer = Adam(0.0002, 0.5)
 
 # 构建和编译判别器
 self.discriminator = self.build_discriminator()
 self.discriminator.compile(loss='binary_crossentropy',
  optimizer=optimizer,
  metrics=['accuracy'])
 
 # 构建生成器
 self.generator = self.build_generator()
 
 # 生成器输入噪音,生成假的图片
 z = Input(shape=(self.latent_dim,))
 img = self.generator(z)
 
 # 为了组合模型,只训练生成器
 self.discriminator.trainable = False
 
 # 判别器将生成的图像作为输入并确定有效性
 validity = self.discriminator(img)
 
 # The combined model (stacked generator and discriminator)
 # 训练生成器骗过判别器
 self.combined = Model(z, validity)
 self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
 
 def build_generator(self):
 
 model = Sequential()
 model.add(Dense(64, input_dim=self.latent_dim))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))
 
 model.add(Dense(128))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))
 
 model.add(Dense(256))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))
 
 model.add(Dense(512))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))
 
 model.add(Dense(1024))
 model.add(LeakyReLU(alpha=0.2))
 model.add(BatchNormalization(momentum=0.8))
 
 #np.prod(self.img_shape)=3x60x1
 model.add(Dense(np.prod(self.img_shape), activation='tanh'))
 model.add(Reshape(self.img_shape))
 
 model.summary()
 
 noise = Input(shape=(self.latent_dim,))
 img = model(noise)
 
 #输入噪音,输出图片
 return Model(noise, img)
 
 def build_discriminator(self):
 
 model = Sequential()
 
 model.add(Flatten(input_shape=self.img_shape))
 
 model.add(Dense(1024))
 model.add(LeakyReLU(alpha=0.2))
 
 model.add(Dense(512))
 model.add(LeakyReLU(alpha=0.2))
 
 model.add(Dense(256))
 model.add(LeakyReLU(alpha=0.2))
 
 model.add(Dense(128))
 model.add(LeakyReLU(alpha=0.2))
 
 model.add(Dense(64))
 model.add(LeakyReLU(alpha=0.2))
 
 model.add(Dense(1, activation='sigmoid'))
 model.summary()
 
 img = Input(shape=self.img_shape)
 validity = model(img)
 return Model(img, validity)
 
 def train(self, epochs, batch_size=128, sample_interval=50):
 
 ############################################################
 #自己数据集此部分需要更改
 # 加载数据集
 data = np.load('data/相对大小分叉.npy') 
 data = data[:,:,0:60]
 # 归一化到-1到1
 data = data * 2 - 1
 data = np.expand_dims(data, axis=3)
 ############################################################
 
 # Adversarial ground truths
 valid = np.ones((batch_size, 1))
 fake = np.zeros((batch_size, 1))
 
 for epoch in range(epochs):
 
  # ---------------------
  # 训练判别器
  # ---------------------
 
  # data.shape[0]为数据集的数量,随机生成batch_size个数量的随机数,作为数据的索引
  idx = np.random.randint(0, data.shape[0], batch_size)
  
  #从数据集随机挑选batch_size个数据,作为一个批次训练
  imgs = data[idx]
  
  #噪音维度(batch_size,100)
  noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
 
  # 由生成器根据噪音生成假的图片
  gen_imgs = self.generator.predict(noise)
 
  # 训练判别器,判别器希望真实图片,打上标签1,假的图片打上标签0
  d_loss_real = self.discriminator.train_on_batch(imgs, valid)
  d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
  d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
 
  # ---------------------
  # 训练生成器
  # ---------------------
 
  noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
 
  # Train the generator (to have the discriminator label samples as valid)
  g_loss = self.combined.train_on_batch(noise, valid)
 
  # 打印loss值
  print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
 
  # 没sample_interval个epoch保存一次生成图片
  if epoch % sample_interval == 0:
  self.sample_images(epoch)
  if not os.path.exists("keras_model"):
   os.makedirs("keras_model")
  self.generator.save_weights("keras_model/G_model%d.hdf5" % epoch,True)
  self.discriminator.save_weights("keras_model/D_model%d.hdf5" %epoch,True)
 
 def sample_images(self, epoch):
 r, c = 10, 10
 # 重新生成一批噪音,维度为(100,100)
 noise = np.random.normal(0, 1, (r * c, self.latent_dim))
 gen_imgs = self.generator.predict(noise)
 
 # 将生成的图片重新归整到0-1之间
 gen = 0.5 * gen_imgs + 0.5
 gen = gen.reshape(-1,3,60)
 
 fig,axs = plt.subplots(r,c) 
 cnt = 0 
 for i in range(r): 
  for j in range(c): 
  xy = gen[cnt] 
  for k in range(len(xy)): 
   x = xy[k][0:30] 
   y = xy[k][30:60] 
   if k == 0: 
   axs[i,j].plot(x,y,color='blue') 
   if k == 1: 
   axs[i,j].plot(x,y,color='red') 
   if k == 2: 
   axs[i,j].plot(x,y,color='green') 
   plt.xlim(0.,1.)
   plt.ylim(0.,1.)
   plt.xticks(np.arange(0,1,0.1))
   plt.xticks(np.arange(0,1,0.1))
   axs[i,j].axis('off')
  cnt += 1 
 if not os.path.exists("keras_imgs"):
  os.makedirs("keras_imgs")
 fig.savefig("keras_imgs/%d.png" % epoch)
 plt.close()
 
 def test(self,gen_nums=100,save=False):
 self.generator.load_weights("keras_model/G_model4000.hdf5",by_name=True)
 self.discriminator.load_weights("keras_model/D_model4000.hdf5",by_name=True)
 noise = np.random.normal(0,1,(gen_nums,self.latent_dim))
 gen = self.generator.predict(noise)
 gen = 0.5 * gen + 0.5
 gen = gen.reshape(-1,3,60)
 print(gen.shape)
 ###############################################################
 #直接可视化生成图片
 if save:
  for i in range(0,len(gen)):
  plt.figure(figsize=(128,128),dpi=1)
  plt.plot(gen[i][0][0:30],gen[i][0][30:60],color='blue',linewidth=300)
  plt.plot(gen[i][1][0:30],gen[i][1][30:60],color='red',linewidth=300)
  plt.plot(gen[i][2][0:30],gen[i][2][30:60],color='green',linewidth=300)
  plt.axis('off')
  plt.xlim(0.,1.)
  plt.ylim(0.,1.)
  plt.xticks(np.arange(0,1,0.1))
  plt.yticks(np.arange(0,1,0.1))
  if not os.path.exists("keras_gen"):
   os.makedirs("keras_gen")
  plt.savefig("keras_gen"+os.sep+str(i)+'.jpg',dpi=1)
  plt.close()
 ##################################################################
 #重整图片到0-1
 else:
  for i in range(len(gen)):
  plt.plot(gen[i][0][0:30],gen[i][0][30:60],color='blue')
  plt.plot(gen[i][1][0:30],gen[i][1][30:60],color='red')
  plt.plot(gen[i][2][0:30],gen[i][2][30:60],color='green')
  plt.xlim(0.,1.)
  plt.ylim(0.,1.)
  plt.xticks(np.arange(0,1,0.1))
  plt.xticks(np.arange(0,1,0.1))
  plt.show()
 
if __name__ == '__main__':
 gan = GAN()
 gan.train(epochs=300000, batch_size=32, sample_interval=2000)
# gan.test(save=True)

以上这篇Keras自动下载的数据集/模型存放位置介绍就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


推荐阅读
  • 优化联通光猫DNS服务器设置
    本文详细介绍了如何为联通光猫配置DNS服务器地址,以提高网络解析效率和访问体验。通过智能线路解析功能,域名解析可以根据访问者的IP来源和类型进行差异化处理,从而实现更优的网络性能。 ... [详细]
  • 本文详细分析了JSP(JavaServer Pages)技术的主要优点和缺点,帮助开发者更好地理解其适用场景及潜在挑战。JSP作为一种服务器端技术,广泛应用于Web开发中。 ... [详细]
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 在计算机技术的学习道路上,51CTO学院以其专业性和专注度给我留下了深刻印象。从2012年接触计算机到2014年开始系统学习网络技术和安全领域,51CTO学院始终是我信赖的学习平台。 ... [详细]
  • Linux 系统启动故障排除指南:MBR 和 GRUB 问题
    本文详细介绍了 Linux 系统启动过程中常见的 MBR 扇区和 GRUB 引导程序故障及其解决方案,涵盖从备份、模拟故障到恢复的具体步骤。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 解决Linux系统中pygraphviz安装问题
    本文探讨了在Linux环境下安装pygraphviz时遇到的常见问题,并提供了详细的解决方案和最佳实践。 ... [详细]
  • 本文介绍了一款用于自动化部署 Linux 服务的 Bash 脚本。该脚本不仅涵盖了基本的文件复制和目录创建,还处理了系统服务的配置和启动,确保在多种 Linux 发行版上都能顺利运行。 ... [详细]
  • CMake跨平台开发实践
    本文介绍如何使用CMake支持不同平台的代码编译。通过一个简单的示例,我们将展示如何编写CMakeLists.txt以适应Linux和Windows平台,并实现跨平台的函数调用。 ... [详细]
  • Valve 发布 Steam Deck 的新版 Windows 驱动程序
    Valve 最新发布了针对 Steam Deck 掌机的 Windows 驱动程序,旨在提升其在 Windows 环境下的兼容性、安全性和性能表现。 ... [详细]
  • Windows服务与数据库交互问题解析
    本文探讨了在Windows 10(64位)环境下开发的Windows服务,旨在定期向本地MS SQL Server (v.11)插入记录。尽管服务已成功安装并运行,但记录并未正确插入。我们将详细分析可能的原因及解决方案。 ... [详细]
  • 深入理解 Oracle 存储函数:计算员工年收入
    本文介绍如何使用 Oracle 存储函数查询特定员工的年收入。我们将详细解释存储函数的创建过程,并提供完整的代码示例。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 优化版Windows 10 LTSC 21H2企业版:适用于低内存设备
    此版本为经过优化的Windows 10 LTSC 21H2企业版,特别适合低内存配置的计算机。它基于官方版本进行了精简和性能优化,确保在资源有限的情况下依然能够稳定运行。 ... [详细]
author-avatar
活宝贝aaaaaaaaaaaaa
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有