热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

开发笔记:培训批次:哪种Tensorflow方法是正确的?

篇首语:本文由编程笔记#小编为大家整理,主要介绍了培训批次:哪种Tensorflow方法是正确的?相关的知识,希望对你有一定的参考价值。

篇首语:本文由编程笔记#小编为大家整理,主要介绍了培训批次:哪种Tensorflow方法是正确的?相关的知识,希望对你有一定的参考价值。



我正在尝试训练一个非常简单的神经网络来对数据样本进行分类,其中某些类必然会成功完成其他类 - 这就是我决定让输入数据分批进入网络的原因。使用Tensorflow,显然你可以通过多种方式声明批量,例如tf.data.Dataset.batch(我目前使用Adam Optimizer训练)和tf.train.batch。区别在哪里?这些方法应该一起使用还是排他性的?在后一种情况下:我应该选择哪一个?


答案

tf.train.*是一个较旧的API,比tf.data.*更复杂且容易出错(你需要自己照顾队列,线程运行器,协调器等)。为了您的声明目的(批处理数据并将其提供给模型),两者在功能上是等效的,因为两者都达到了目标。但是,您应该考虑使用tf.data,因为它更易于使用,而currently recommended way则可以处理输入数据集。



推荐阅读
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 利用Java与Tesseract-OCR实现数字识别
    本文深入探讨了如何利用Java语言结合Tesseract-OCR技术来实现图像中的数字识别功能,旨在为开发者提供详细的指导和实践案例。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • c# – UWP:BrightnessOverride StartOverride逻辑 ... [详细]
  • 如何在窗口右下角添加调整大小的手柄
    本文探讨了如何在传统MFC/Win32 API编程中实现类似C# WinForms中的SizeGrip功能,即在窗口的右下角显示一个用于调整窗口大小的手柄。我们将介绍具体的实现方法和相关API。 ... [详细]
  • 本文详细解析了Python中的os和sys模块,介绍了它们的功能、常用方法及其在实际编程中的应用。 ... [详细]
  • ServiceStack与Swagger的无缝集成指南
    本文详细介绍了如何在ServiceStack项目中集成Swagger,以实现API文档的自动生成和在线测试。通过本指南,您将了解从配置到部署的完整流程,并掌握如何优化API接口的开发和维护。 ... [详细]
  • 本文介绍了如何利用TensorFlow框架构建一个简单的非线性回归模型。通过生成200个随机数据点进行训练,模型能够学习并预测这些数据点的非线性关系。 ... [详细]
  • 在上一篇文章中,我们初步探讨了神经网络的基础概念,并通过一个简单的例子——将摄氏度转换为华氏度——介绍了单个神经元的工作原理。本文将继续探索神经网络的应用,特别是如何构建一个基本的分类器。 ... [详细]
  • 李宏毅机器学习笔记:无监督学习之线性方法
    无监督学习主要涵盖两大类别:一是聚类与降维,旨在简化数据结构;二是生成模型,用于从编码生成新的数据样本。本文深入探讨了这些技术的具体应用和理论基础。 ... [详细]
author-avatar
Mars丶fasfa
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有