热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,DeepResidualLearning,squeezenet

关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需。如果读者是初接触CNN,建议可以先看一看“Deep Learning(深度学习)学习笔记整理系列”中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助。

  1. Lenet,1986年
  2. Alexnet,2012年
  3. GoogleNet,2014年
  4. VGG,2014年
  5. Deep Residual Learning,2015年

Lenet

就从Lenet说起,可以看下caffe中lenet的配置文件(点我),可以试着理解每一层的大小,和各种参数。由两个卷积层,两个池化层,以及两个全连接层组成。 卷积都是5*5的模板,stride=1,池化都是MAX。下图是一个类似的结构,可以帮助理解层次结构(和caffe不完全一致,不过基本上差不多)

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

对于卷积层,其计算公式为

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

其中K表示由L层到L+1层要产生的feature的数量,表示“卷积核”,表示偏置,也就是bias,令卷积核的大小为5*5,总共就有6*(5*5+1)=156个参数,对于卷积层C1,每个像素都与前一层的5*5个像素和1个bias有连接,所以总共有156*28*28=122304个连接(connection)。

对于LeNet5,S2这个pooling层是对C1中的2*2区域内的像素求和再加上一个偏置,然后将这个结果再做一次映射(sigmoid等函数),所以相当于对S1做了降维,此处共有6*2=12个参数。S2中的每个像素都与C1中的2*2个像素和1个偏置相连接,所以有6*5*14*14=5880个连接(connection)。

除此外,pooling层还有max-pooling和mean-pooling这两种实现,max-pooling即取2*2区域内最大的像素,而mean-pooling即取2*2区域内像素的均值。

LeNet5最复杂的就是S2到C3层,其连接如下图所示。

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

前6个feature map与S2层相连的3个feature map相连接,后面6个feature map与S2层相连的4个feature map相连接,后面3个feature map与S2层部分不相连的4个feature map相连接,最后一个与S2层的所有feature map相连。卷积核大小依然为5*5,所以总共有6*(3*5*5+1)+6*(4*5*5+1)+3*(4*5*5+1)+1*(6*5*5+1)=1516个参数。而图像大小为10*10,所以共有151600个连接。

S4是pooling层,窗口大小仍然是2*2,共计16个feature map,所以32个参数,16*(25*4+25)=2000个连接。

C5是卷积层,总共120个feature map,每个feature map与S4层所有的feature map相连接,卷积核大小是5*5,而S4层的feature map的大小也是5*5,所以C5的feature map就变成了1个点,共计有120(25*16+1)=48120个参数。

F6相当于MLP中的隐含层,有84个节点,所以有84*(120+1)=10164个参数。F6层采用了正切函数,计算公式为,

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

输出层采用了RBF函数,即径向欧式距离函数,计算公式为,

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

以上就是LeNet5的结构。


Alexnet

2012年,Imagenet比赛冠军的model——Alexnet [2](以第一作者alex命名)。caffe的model文件在这里。说实话,这个model的意义比后面那些model都大很多,首先它证明了CNN在复杂模型下的有效性,然后GPU实现使得训练在可接受的时间范围内得到结果,确实让CNN和GPU都大火了一把,顺便推动了有监督DL的发展。

模型结构见下图,别看只有寥寥八层(不算input层),但是它有60M以上的参数总量,事实上在参数量上比后面的网络都大。

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

这个图有点点特殊的地方是卷积部分都是画成上下两块,意思是说吧这一层计算出来的feature map分开,但是前一层用到的数据要看连接的虚线,如图中input层之后的第一层第二层之间的虚线是分开的,是说二层上面的128map是由一层上面的48map计算的,下面同理;而第三层前面的虚线是完全交叉的,就是说每一个192map都是由前面的128+128=256map同时计算得到的。

Alexnet有一个特殊的计算层,LRN层,做的事是对当前层的输出结果做平滑处理。下面是我画的示意图:

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

前后几层(对应位置的点)对中间这一层做一下平滑约束,计算方法是:

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

具体打开Alexnet的每一阶段(含一次卷积主要计算)来看[2][3]:

(1)con - relu - pooling - LRN

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

具体计算都在图里面写了,要注意的是input层是227*227,而不是paper里面的224*224,这里可以算一下,主要是227可以整除后面的conv1计算,224不整除。如果一定要用224可以通过自动补边实现,不过在input就补边感觉没有意义,补得也是0。

(2)conv - relu - pool - LRN

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

和上面基本一样,唯独需要注意的是group=2,这个属性强行把前面结果的feature map分开,卷积部分分成两部分做。

(3)conv - relu

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

(4)conv-relu

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

(5)conv - relu - pool

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

(6)fc - relu - dropout

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

这里有一层特殊的dropout层,在alexnet中是说在训练的以1/2概率使得隐藏层的某些neuron的输出为0,这样就丢到了一半节点的输出,BP的时候也不更新这些节点。 
(7) 
fc - relu - dropout 
卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet
(8)fc - softmax 
卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

以上图借用[3],感谢。

GoogleNet

googlenet[4][5],14年比赛冠军的model,这个model证明了一件事:用更多的卷积,更深的层次可以得到更好的结构。(当然,它并没有证明浅的层次不能达到这样的效果)

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

这个model基本上构成部件和alexnet差不多,不过中间有好几个inception的结构:

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

是说一分四,然后做一些不同大小的卷积,之后再堆叠feature map。

计算量如下图,可以看到参数总量并不大,但是计算次数是非常大的。 
卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

VGG

VGG有很多个版本,也算是比较稳定和经典的model。它的特点也是连续conv多,计算量巨大(比前面几个都大很多)。具体的model结构可以参考[6],这里给一个简图。基本上组成构建就是前面alexnet用到的。 
卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

下面是几个model的具体结构,可以查阅,很容易看懂。

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

Deep Residual Learning

这个model是2015年底最新给出的,也是15年的imagenet比赛冠军。可以说是进一步将conv进行到底,其特殊之处在于设计了“bottleneck”形式的block(有跨越几层的直连)。最深的model采用的152层!!下面是一个34层的例子,更深的model见表格。 
卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet 
其实这个model构成上更加简单,连LRN这样的layer都没有了。

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

block的构成见下图:

卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning,squeezenet

总结

OK,到这里把常见的最新的几个model都介绍完了,可以看到,目前cnn model的设计思路基本上朝着深度的网络以及更多的卷积计算方向发展。虽然有点暴力,但是效果上确实是提升了。当然,我认为以后会出现更优秀的model,方向应该不是更深,而是简化。是时候动一动卷积计算的形式了。

参考资料

[1] http://blog.csdn.net/zouxy09/article/details/8781543/ 
[2] ImageNet Classification with Deep Convolutional Neural Networks 
[3] http://blog.csdn.net/sunbaigui/article/details/39938097 
[4] http://blog.csdn.net/csyhhb/article/details/45967291 
[5] Going deeper with convolutions 
[6] VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION


推荐阅读
  • 也就是|小窗_卷积的特征提取与参数计算
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。Dense和Conv2D根本区别在于,Den ... [详细]
  • Opencv提供了几种分类器,例程里通过字符识别来进行说明的1、支持向量机(SVM):给定训练样本,支持向量机建立一个超平面作为决策平面,使得正例和反例之间的隔离边缘被最大化。函数原型:训练原型cv ... [详细]
  • keras归一化激活函数dropout
    激活函数:1.softmax函数在多分类中常用的激活函数,是基于逻辑回归的,常用在输出一层,将输出压缩在0~1之间,且保证所有元素和为1,表示输入值属于每个输出值的概率大小2、Si ... [详细]
  • 微软头条实习生分享深度学习自学指南
    本文介绍了一位微软头条实习生自学深度学习的经验分享,包括学习资源推荐、重要基础知识的学习要点等。作者强调了学好Python和数学基础的重要性,并提供了一些建议。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 本文主要解析了Open judge C16H问题中涉及到的Magical Balls的快速幂和逆元算法,并给出了问题的解析和解决方法。详细介绍了问题的背景和规则,并给出了相应的算法解析和实现步骤。通过本文的解析,读者可以更好地理解和解决Open judge C16H问题中的Magical Balls部分。 ... [详细]
  • 本文介绍了Perl的测试框架Test::Base,它是一个数据驱动的测试框架,可以自动进行单元测试,省去手工编写测试程序的麻烦。与Test::More完全兼容,使用方法简单。以plural函数为例,展示了Test::Base的使用方法。 ... [详细]
  • 不同优化算法的比较分析及实验验证
    本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。 ... [详细]
  • CF:3D City Model(小思维)问题解析和代码实现
    本文通过解析CF:3D City Model问题,介绍了问题的背景和要求,并给出了相应的代码实现。该问题涉及到在一个矩形的网格上建造城市的情景,每个网格单元可以作为建筑的基础,建筑由多个立方体叠加而成。文章详细讲解了问题的解决思路,并给出了相应的代码实现供读者参考。 ... [详细]
  • 本文介绍了一个题目的解法,通过二分答案来解决问题,但困难在于如何进行检查。文章提供了一种逃逸方式,通过移动最慢的宿管来锁门时跑到更居中的位置,从而使所有合格的寝室都居中。文章还提到可以分开判断两边的情况,并使用前缀和的方式来求出在任意时刻能够到达宿管即将锁门的寝室的人数。最后,文章提到可以改成O(n)的直接枚举来解决问题。 ... [详细]
  • 3.223.28周学习总结中的贪心作业收获及困惑
    本文是对3.223.28周学习总结中的贪心作业进行总结,作者在解题过程中参考了他人的代码,但前提是要先理解题目并有解题思路。作者分享了自己在贪心作业中的收获,同时提到了一道让他困惑的题目,即input details部分引发的疑惑。 ... [详细]
  • Ihavethefollowingonhtml我在html上有以下内容<html><head><scriptsrc..3003_Tes ... [详细]
  • Imtryingtofigureoutawaytogeneratetorrentfilesfromabucket,usingtheAWSSDKforGo.我正 ... [详细]
  • 论文阅读:《Bag of Tricks for LongTailed Visual Recognition with Deep Convolutional Neural Networks》
    基于深度卷积神经网络的长尾视觉识别技巧包摘要近年来,挑战性长尾分布上的视觉识别技术取得了很大的进展,主要基于各种复杂的范式(如元学习)。除了这些复杂 ... [详细]
  • 为什么说BP神经网络就是人工神经网络的一种?
    BP(BackPropagation)网络是由Rinehart等于1986年提出的,是一种按误差逆传播算法训练的,多层前馈网络,是目前应用最广泛的神经网络模型之一。�CBP网络能学习和 ... [详细]
author-avatar
手机用户2502910651
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有