热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

解决串口传输“阻塞”问题的方案

关注、星标公众号,不错过精彩内容来源:嵌入式云IOT技术圈本文在探讨传统数据收发不足之后,介绍如何使用带FIFO的串口来减少接收中断次数&

关注、星标公众,不错过精彩内容

来源:嵌入式云IOT技术圈

本文在探讨传统数据收发不足之后,介绍如何使用带FIFO的串口来减少接收中断次数,通过一种自定义通讯协议格式,给出帧打包方法;之后介绍一种特殊的串口数据发送方法,可在避免使用串口发送中断的情况下,提高系统的响应速度。

1.简介

串口由于使用简单,价格低廉,配合RS485芯片可以实现长距离、抗干扰能力强的局域网络而被广泛使用。随着产品功能的增多,需要处理的任务也越来越复杂,系统任务也越来越需要及时响应。绝大多数的现代单片机(ARM7、Cortex-M3)串口都带有一定数量的硬件FIFO,本文将介绍如何使用硬件FIFO来减少接收中断次数,提高发送效率。在此之前,先来列举一下传统串口数据收发的不足之处:

每接收一个字节数据,产生一次接收中断。不能有效的利用串口硬件FIFO,减少中断次数。应答数据采用等待发送的方法。由于串行数据传输的时间远远跟不上CPU的处理时间,等待串口发送完当前字节再发送下一字节会造成CPU资源浪费,不利于系统整体响应(在1200bps下,发送一字节大约需要10ms,如果一次发送几十个字节数据,CPU会长时间处于等待状态)。应答数据采用中断发送。增加一个中断源,增加系统的中断次数,这会影响系统整体稳定性(从可靠性角度考虑,中断事件应越少越好)。针对上述的不足之处,将结合一个常用自定义通讯协议,提供一个完整的解决方案。

2.串口FIFO

串口FIFO可以理解为串口专用的缓存,该缓存采用先进先出方式。数据接收FIFO和数据发送FIFO通常是独立的两个硬件。串口接收的数据,先放入接收FIFO中,当FIFO中的数据达到触发值(通常触发值为1、2、4、8、14字节)或者FIFO中的数据虽然没有达到设定值但是一段时间(通常为3.5个字符传输时间)没有再接收到数据,则通知CPU产生接收中断;发送的数据要先写入发送FIFO,只要发送FIFO未空,硬件会自动发送FIFO中的数据。写入发送FIFO的字节个数受FIFO最大深度影响,通常一次写入最多允许16字节。上述列举的数据跟具体的硬件有关,CPU类型不同,特性也不尽相同,使用前应参考相应的数据手册。

3.数据接收与打包

FIFO可以缓存串口接收到的数据,因此我们可以利用FIFO来减少中断次数。以NXP的lpc1778芯片为例,接收FIFO的触发级别可以设置为1、2、4、8、14字节,推荐使用8字节或者14字节,这也是PC串口接收FIFO的默认值。这样,当接收到大量数据时,每8个字节或者14个字节才会产生一次中断(最后一次接收除外),相比接收一个字节即产生一个中断,这种方法串口接收中断次数大大减少。

将接收FIFO设置为8或者14字节也十分简单,还是以lpc1778为例,只需要设置UART FIFO控制寄存器UnFCR即可。

接收的数据要符合通讯协议规定,数据与协议是密不可分的。通常我们需要将接收到的数据根据协议打包成一帧,然后交由上层处理。下面介绍一个自定义的协议帧格式,并给出一个通用打包成帧的方法。

自定义协议格式如图3-1所示。

  • 帧首:通常是3~5个0xFF或者0xEE

  • 地址号:要进行通讯的设备的地址编号,1字节

  • 命令号:对应不同的功能,1字节

  • 长度:数据区域的字节个数,1字节

  • 数据:与具体的命令号有关,数据区长度可以为0,整个帧的长度不应超过256字节

  • 校验:异或和校验(1字节)或者CRC16校验(2字节),本例使用CRC16校验

下面介绍如何将接收到的数据按照图3-1所示的格式打包成一帧。

3.1 定义数据结构

typedef struct {  uint8_t * dst_buf;                  //指向接收缓存  uint8_t sfd;                        //帧首标志,为0xFF或者0xEE  uint8_t sfd_flag;                   //找到帧首,一般是3~5个FF或EE  uint8_t sfd_count;                  //帧首的个数,一般3~5个  uint8_t received_len;               //已经接收的字节数  uint8_t find_fram_flag;             //找到完整帧后,置1  uint8_t frame_len;                  //本帧数据总长度,这个区域是可选的  
}find_frame_struct;

3.2 初始化数据结构,一般放在串口初始化中

/** 
* @brief    初始化寻找帧的数据结构 
* @param    p_fine_frame:指向打包帧数据结构体变量 
* @param    dst_buf:指向帧缓冲区 
* @param    sfd:帧首标志,一般为0xFF或者0xEE 
*/  
void init_find_frame_struct(find_frame_struct * p_find_frame,uint8_t *dst_buf,uint8_t sfd)  
{  p_find_frame->dst_buf=dst_buf;  p_find_frame->sfd=sfd;  p_find_frame->find_fram_flag=0;  p_find_frame->frame_len=10;       p_find_frame->received_len=0;  p_find_frame->sfd_count=0;  p_find_frame->sfd_flag=0;  

3.3 数据打包程序

/** 
* @brief    寻找一帧数据  返回处理的数据个数 
* @param    p_find_frame:指向打包帧数据结构体变量 
* @param    src_buf:指向串口接收的原始数据 
* @param    data_len:src_buf本次串口接收到的原始数据个数 
* @param    sum_len:帧缓存的最大长度 
* @return   本次处理的数据个数 
*/  
uint32_t find_one_frame(find_frame_struct * p_find_frame,const uint8_t * src_buf,uint32_t data_len,uint32_t sum_len)  
{  uint32_t src_len=0;  while(data_len--)  {  if(p_find_frame ->sfd_flag==0)                        {   //没有找到起始帧首  if(src_buf[src_len++]==p_find_frame ->sfd)  {  p_find_frame ->dst_buf[p_find_frame ->received_len++]=p_find_frame ->sfd;  if(++p_find_frame ->sfd_count==5)          {  p_find_frame ->sfd_flag=1;  p_find_frame ->sfd_count=0;  p_find_frame ->frame_len=10;  }  }  else  {  p_find_frame ->sfd_count=0;   p_find_frame ->received_len=0;   }  }  else   {   //是否是"长度"字节? Y->获取这帧的数据长度  if(7==p_find_frame ->received_len)                {  p_find_frame->frame_len=src_buf[src_len]+5+1+1+1+2; //帧首+地址号+命令号+数据长度+校验  if(p_find_frame->frame_len>=sum_len)  {   //这里处理方法根据具体应用不一定相同  MY_DEBUGF(SLAVE_DEBUG,("数据长度超出缓存!\n"));  p_find_frame->frame_len= sum_len;       }  }  p_find_frame ->dst_buf[p_find_frame->received_len++]=src_buf[src_len++];  if(p_find_frame ->received_len==p_find_frame ->frame_len)                  {  p_find_frame ->received_len=0;              //一帧完成    p_find_frame ->sfd_flag=0;  p_find_frame ->find_fram_flag=1;   return src_len;  }  }  }  p_find_frame ->find_fram_flag=0;  return src_len;  

使用例子:

定义数据结构体变量:

find_frame_structslave_find_frame_srt;

定义接收数据缓冲区:

#define SLAVE_REC_DATA_LEN  128
uint8_t slave_rec_buf[SLAVE_REC_DATA_LEN];

在串口初始化中调用结构体变量初始化函数:

init_find_frame_struct(&slave_find_frame_srt,slave_rec_buf,0xEE);

在串口接收中断中调用数据打包函数:

find_one_frame(&slave_find_frame_srt,tmp_rec_buf,data_len,SLAVE_REC_DATA_LEN);

其中,rec_buf是串口接收临时缓冲区,data_len是本次接收的数据长度。

4.数据发送

前文提到,传统的等待发送方式会浪费CPU资源,而中断发送方式虽然不会造成CPU资源浪费,但又增加了一个中断源。在我们的使用中发现,定时器中断是几乎每个应用都会使用的,我们可以利用定时器中断以及硬件FIFO来进行数据发送,通过合理设计后,这样的发送方法即不会造成CPU资源浪费,也不会多增加中断源和中断事件。

需要提前说明的是,这个方法并不是对所有应用都合适,对于那些没有开定时器中断的应用本方法当然是不支持的,另外如果定时器中断间隔较长而通讯波特率又特别高的话,本方法也不太适用。公司目前使用的通讯波特率一般比较小(1200bps、2400bps),在这些波特率下,定时器间隔为10ms以下(含10ms)就能满足。如果定时器间隔为1ms以下(含1ms),是可以使用115200bps的。

本方法主要思想是:定时器中断触发后,判断是否有数据要发送,如果有数据要发送并且满足发送条件,则将数据放入发送FIFO中,对于lpc1778来说,一次最多可以放16字节数据。之后硬件会自动启动发送,无需CPU参与。

下面介绍如何使用定时器发送数据,硬件载体为RS485。因为发送需要操作串口寄存器以及RS485方向控制引脚,需跟硬件密切相关,以下代码使用的硬件为lpc1778,但思想是通用的。

4.1 定义数据结构

/*串口帧发送结构体*/  
typedef struct {  uint16_t send_sum_len;          //要发送的帧数据长度  uint8_t  send_cur_len;          //当前已经发送的数据长度  uint8_t  send_flag;             //是否发送标志  uint8_t * send_data;            //指向要发送的数据缓冲区  
}uart_send_struct;  

4.2 定时处理函数

/** 
* @brief    定时发送函数,在定时器中断中调用,不使用发送中断的情况下减少发送等待 
* @param    UARTx:指向硬件串口寄存器基地址 
* @param    p:指向串口帧发送结构体变量 
*/  
#define FARME_SEND_FALG 0x5A          
#define SEND_DATA_NUM   12  
static void uart_send_com(LPC_UART_TypeDef *UARTx,uart_send_struct *p)  
{  uint32_t i;  uint32_t tmp32;  if(UARTx->LSR &(0x01<<6))                      //发送为空  {         if(p->send_flag&#61;&#61;FARME_SEND_FALG)  {                          RS485ClrDE;                             // 置485为发送状态  tmp32&#61;p->send_sum_len-p->send_cur_len;  if(tmp32>SEND_DATA_NUM)                 //向发送FIFO填充字节数据  {  for(i&#61;0;iTHR&#61;p->send_data[p->send_cur_len&#43;&#43;];  }  }  else  {  for(i&#61;0;iTHR&#61;p->send_data[p->send_cur_len&#43;&#43;];  }  p->send_flag&#61;0;                      }  }  else  {  RS485SetDE;  }  }  
}  

其中&#xff0c;RS485ClrDE为宏定义&#xff0c;设置RS485为发送模式&#xff1b;RS485SetDE也为宏定义&#xff0c;设置RS485为接收模式。

使用例子&#xff1a;

定义数据结构体变量&#xff1a;

uart_send_struct uart0_send_str;

定义发送缓冲区&#xff1a;

uint8_t uart0_send_buf[UART0_SEND_LEN];

根据使用的硬件串口&#xff0c;对定时处理函数做二次封装&#xff1a;

void uart0_send_data(void)
{uart_send_com(LPC_UART0,&uart0_send_str);
}

将封装函数uart0_send_data();放入定时器中断处理函数中&#xff1b;

在需要发送数据的地方&#xff0c;设置串口帧发送结构体变量&#xff1a;

uart0_send_str.send_sum_len&#61;data_len;       //data_len为要发送的数据长度
uart0_send_str.send_cur_len&#61;0;              //固定为0
uart0_send_str.send_data&#61;uart0_send_buf;    //绑定发送缓冲区
uart0_send_str.send_flag&#61;FARME_SEND_FALG;   //设置发送标志

5.总结

本文主要讨论了一种高效的串口数据收发方法&#xff0c;并给出了具体的代码实现。在当前处理器任务不断增加的情况下&#xff0c;提供了一个占用资源少&#xff0c;可提高系统整体性能的新的思路。

转载请注明出处: http://blog.csdn.net/zhzht19861011/article/details/4852239

推荐阅读&#xff1a;

开源≠免费&#xff01;GNU 对自由软件的定义

UNIX、Linux、iOS、Android 它们之间的关系

Keil、IAR生成静态库方法&#xff0c;静态与动态库的区别

关注微信公众号『strongerHuang』&#xff0c;后台回复“1024”查看更多内容&#xff0c;回复“加群”按规则加入技术交流群。

长按前往图中包含的公众号关注


推荐阅读
  • 零拷贝技术是提高I/O性能的重要手段,常用于Java NIO、Netty、Kafka等框架中。本文将详细解析零拷贝技术的原理及其应用。 ... [详细]
  • 单片微机原理P3:80C51外部拓展系统
      外部拓展其实是个相对来说很好玩的章节,可以真正开始用单片机写程序了,比较重要的是外部存储器拓展,81C55拓展,矩阵键盘,动态显示,DAC和ADC。0.IO接口电路概念与存 ... [详细]
  • 字符串学习时间:1.5W(“W”周,下同)知识点checkliststrlen()函数的返回值是什么类型的?字 ... [详细]
  • 最详尽的4K技术科普
    什么是4K?4K是一个分辨率的范畴,即40962160的像素分辨率,一般用于专业设备居多,目前家庭用的设备,如 ... [详细]
  • 本文总结了一些开发中常见的问题及其解决方案,包括特性过滤器的使用、NuGet程序集版本冲突、线程存储、溢出检查、ThreadPool的最大线程数设置、Redis使用中的问题以及Task.Result和Task.GetAwaiter().GetResult()的区别。 ... [详细]
  • 在《Linux高性能服务器编程》一书中,第3.2节深入探讨了TCP报头的结构与功能。TCP报头是每个TCP数据段中不可或缺的部分,它不仅包含了源端口和目的端口的信息,还负责管理TCP连接的状态和控制。本节内容详尽地解析了TCP报头的各项字段及其作用,为读者提供了深入理解TCP协议的基础。 ... [详细]
  • 本文探讨了如何通过编程手段在Linux系统中禁用硬件预取功能。基于Intel® Core™微架构的应用性能优化需求,文章详细介绍了相关配置方法和代码实现,旨在帮助开发人员有效控制硬件预取行为,提升应用程序的运行效率。 ... [详细]
  • 本文介绍如何使用 Python 的 DOM 和 SAX 方法解析 XML 文件,并通过示例展示了如何动态创建数据库表和处理大量数据的实时插入。 ... [详细]
  • javascript分页类支持页码格式
    前端时间因为项目需要,要对一个产品下所有的附属图片进行分页显示,没考虑ajax一张张请求,所以干脆一次性全部把图片out,然 ... [详细]
  • 在Delphi7下要制作系统托盘,只能制作一个比较简单的系统托盘,因为ShellAPI文件定义的TNotifyIconData结构体是比较早的版本。定义如下:1234 ... [详细]
  • poj 3352 Road Construction ... [详细]
  • 近期在研究逆向工程,因此尝试了一些CTF题目。通过合天网络安全实验室的CTF实战演练平台(http://www.hetianlab.com/CTFrace.html),我对Linux逆向工程的掌握还不够深入,因此暂时跳过了RE300题目。首先从逆向100开始,将文件后缀名修改为.apk进行初步分析。这一过程不仅帮助我熟悉了基本的逆向技巧,还加深了对Android应用结构的理解。 ... [详细]
  • 在CentOS 7环境中安装配置Redis及使用Redis Desktop Manager连接时的注意事项与技巧
    在 CentOS 7 环境中安装和配置 Redis 时,需要注意一些关键步骤和最佳实践。本文详细介绍了从安装 Redis 到配置其基本参数的全过程,并提供了使用 Redis Desktop Manager 连接 Redis 服务器的技巧和注意事项。此外,还探讨了如何优化性能和确保数据安全,帮助用户在生产环境中高效地管理和使用 Redis。 ... [详细]
  • 本报告对2018年湘潭大学程序设计竞赛在牛客网上的时间数据进行了详细分析。通过统计参赛者在各个时间段的活跃情况,揭示了比赛期间的编程频率和时间分布特点。此外,报告还探讨了选手在准备过程中面临的挑战,如保持编程手感、学习逆向工程和PWN技术,以及熟悉Linux环境等。这些发现为未来的竞赛组织和培训提供了 valuable 的参考。 ... [详细]
  • 基于Net Core 3.0与Web API的前后端分离开发:Vue.js在前端的应用
    本文介绍了如何使用Net Core 3.0和Web API进行前后端分离开发,并重点探讨了Vue.js在前端的应用。后端采用MySQL数据库和EF Core框架进行数据操作,开发环境为Windows 10和Visual Studio 2019,MySQL服务器版本为8.0.16。文章详细描述了API项目的创建过程、启动步骤以及必要的插件安装,为开发者提供了一套完整的开发指南。 ... [详细]
author-avatar
Tow-face信信
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有