本文由编程笔记#小编为大家整理,主要介绍了比较全的常见的架构设计思想整理相关的知识,希望对你有一定的参考价值。
一、MPP 架构
1、MPP架构的基础概念
MPP (Massively Parallel Processing),即大规模并行处理,在数据库非共享集群中,每个节点都有独立的磁盘存储系统和内存系统,业务数据根据数据库模型和应用特点划分到各个节点上,每台数据节点通过专用网络或者商业通用网络互相连接,彼此协同计算,作为整体提供数据库服务。非共享数据库集群有完全的可伸缩性、高可用、高性能、优秀的性价比、资源共享等优势。
简单来说,MPP是将任务并行的分散到多个服务器和节点上,在每个节点上计算完成后,将各自部分的结果汇总在一起得到最终的结果(与Hadoop相似)。
MPP 属于Shared Nothing,根据Shared 的不同,可以分为如下几种:
Shared Everthting:一般是针对单个主机,完全透明共享CPU/MEMORY/IO,并行处理能力是最差的,典型的代表SQLServer
Shared Disk:各个处理单元使用自己的私有 CPU和Memory,共享磁盘系统。典型的代表Oracle Rac, 它是数据共享,可通过增加节点来提高并行处理的能力,扩展能力较好。其类似于SMP(对称多处理)模式,但是当存储器接口达到饱和的时候,增加节点并不能获得更高的性能 。
Shared Nothing:各个处理单元都有自己私有的CPU/内存/硬盘等,不存在共享资源,类似于MPP(大规模并行处理)模式,各处理单元之间通过协议通信,并行处理和扩展能力更好。典型代表DB2 DPF和hadoop ,各节点相互独立,各自处理自己的数据,处理后的结果可能向上层汇总或在节点间流转。
我们常说的 Sharding 其实就是Share Nothing架构,它是把某个表从物理存储上被水平分割,并分配给多台服务器(或多个实例),每台服务器可以独立工作,具备共同的schema,比如mysql Proxy和Google的各种架构,只需增加服务器数就可以增加处理能力和容量。
很多 Nosql数据库都是基于 MPP Shared Nothing架构的,比如
Greenplum是一种基于PostgreSQL的分布式数据库。其采用shared nothing架构(MPP),主机,操作系统,内存,存储都是自我控制的,不存在共享。也就是每个节点都是一个单独的数据库。节点之间的信息交互是通过节点互联网络实现。通过将数据分布到多个节点上来实现规模数据的存储,通过并行查询处理来提高查询性能。
这个就像是把小数据库组织起来,联合成一个大型数据库。将数据分片,存储在每个节点上。每个节点仅查询自己的数据。所得到的结果再经过主节点处理得到最终结果。通过增加节点数目达到系统线性扩展。
elasticsearch也是一种MPP架构的数据库,Presto、Impala等都是MPP engine,各节点不共享资源,每个executor可以独自完成数据的读取和计算,缺点在于怕stragglers,遇到后整个engine的性能下降到该straggler的能力,所谓木桶的短板,这也是为什么MPP架构不适合异构的机器,要求各节点配置一样。
Spark SQL应该还是算做Batching Processing, 中间计算结果需要落地到磁盘,所以查询效率没有MPP架构的引擎(如Impala)高。
2、MPP架构特征
● 任务并行执行;
● 数据分布式存储(本地化);
● 分布式计算;
● 私有资源;
● 横向扩展;
● Shared Nothing架构。
3、基于MPP架构的数据库架构
这种架构中的每一个节点(node)都是独立的、自给的、节点之间对等,而且整个系统中不存在单点瓶颈,具有非常强的扩展性。
二、SMP(Symmetric Multi-Processor)架构
SMP又称对称多处理器结构,SMP系统内有许多紧耦合多处理器,在这样的系统中,所有的CPU共享全部资源,如总线,内存和I/O系统等;
所谓对称多处理器结构,是指服务器中多个 CPU 对称工作,无主次或从属关系。各 CPU 共享相同的物理内存,每个 CPU 访问内存中的任何地址所需时间是相同的,因此 SMP 也被称为一致存储器访问结构 (UMA : Uniform Memory Access) 。对 SMP 服务器进行扩展的方式包括增加内存、使用更快的 CPU 、增加 CPU 、扩充 I/O( 槽口数与总线数 ) 以及添加更多的外部设备 ( 通常是磁盘存储 ) 。
主要特征是共享,系统中所有资源 (CPU 、内存、 I/O 等 ) 都是共享的。也正是由于这种特征,导致了SMP 服务器的主要问题,那就是它的扩展能力非常有限。对于 SMP 服务器而言,每一个共享的环节都可能造成 SMP 服务器扩展时的瓶颈,而最受限制的则是内存。由于每个 CPU 必须通过相同的内存总线访问相同的内存资源,因此随着 CPU 数量的增加,内存访问冲突将迅速增加,最终会造成 CPU 资源的浪费,使 CPU 性能的有效性大大降低。实验证明, SMP 服务器 CPU 利用率最好的情况是 2 至 4 个 CPU 。
三、SOA 架构
SOA 即面向服务的架构,将应用程序的不同功能单元(称为服务)进行拆分,并通过这些服务之间定义良好的接口和协议联系起来,接口是采用中立的方式进行定义的,它应该独立于实现服务的硬件平台、操作系统和编程语言。这使得构件在各种各样的系统中的服务可以以一种统一和通用的方式进行交互。
面向服务架构,它可以根据需求通过网络对松散耦合的粗粒度应用组件进行分布式部署、组合和使用。服务层是SOA的基础,可以直接被应用调用,从而有效控制系统中与软件代理交互的人为依赖性,SOA是一种粗粒度、松耦合服务架构,服务之间通过简单、精确定义接口进行通讯,不涉及底层编程接口和通讯模型。
松耦合系统脚骨的好处有两点:
1、它的灵活性,它非常的灵活。
2、当组成整个应用程序的每个服务的内部结构和实现逐渐地发生改变时,它能够继续存在。与之相反,紧耦合意味着应用程序的不同组件之间的接口与其功能和结构是紧密相连的,因而当需要对部分或整个应用程序进行某种形式的更改时,它们就显得非常脆弱。
一个服务通常以独立的形式存在与操作系统进程中。各个服务之间通过网络调用跟SOA 相提并论的还有一个ESB(企业服务总线),单来说ESB 就是一根管道,用来连接各个服务节点。为了集成不同系统,不同协议的服务,ESB 做了消息的转化解释和路由工作,让不同的服务互联互通。
SOA 所解决的核心问题:
1. 系统集成:站在系统的角度,解决企业系统间的通信问题,把原先散乱、无规划的系统间的网状结构,梳理成规整、可治理的系统间星形结构,这一步往往需要引入一些产品,比如ESB、以及技术规范、服务管理规范;
这一步解决的核心问题是【有序】
2. 系统的服务化:站在功能的角度,把业务逻辑抽象成可复用、可组装的服务,通过服务的编排实现业务的快速再生,目的:把原先固有的业务功能转变为通用的业务服务,实现业务逻辑的快速复用;这一步解决的核心问题是【复用】
3. 业务的服务化:站在企业的角度,把企业职能抽象成可复用、可组装的服务;把原先职能化的企业架构转变为服务化的企业架构,进一步提升企业的对外服务能力;“前面两步都是从技术层面来解决系统调用、系统功能复用的问题”。第三步,则是以业务驱动把一个业务单元封装成一项服务。
本文作者:张永清 来源出处:https://www.cnblogs.com/laoqing/p/13042432.html
四、微服务架构
微服务架构其实和SOA 架构类似,微服务是在SOA 上做的升华,微服务架构强调的一个重点是“业务需要彻底的组件化和服务化”,原有的单个业务系统会拆分为多个可以独立开发、设计、运行的小应用。这些小应用之间通过服务完成交互和集成。
组件表示一个可以独立更换和升级的单元,就像PC 中的CPU、内存、显卡、硬盘一样,独立且可以更换升级而不影响其他单元。如果我们把PC 作为组件以服务的方式构建,那么这台PC 只需要维护主板和一些必要的外部设备。CPU、内存、硬盘都是以组件方式提供服务,PC 需要调用CPU 做计算处理,只需要知道CPU 这个组件的地址即可。
SOA与微服务区别:
1、SOA注重重用,微服务注重重写
SOA 的主要目的是为了企业各个系统更加容易地融合在一起。
微服务通常由重写一个模块开始。要把整个巨石型的应用重写是有很大的风险的,也不一定必要。我们向微服务迁移的时候通常从耦合度最低的模块或对扩展性要求最高的模块开始。
把它们一个一个剥离出来用敏捷地重写,可以尝试最新的技术和语言和框架,然后 单独布署。它通常不依赖其他服务。微服务中常用的 API Gateway 的模式主要目的也不是重用代码。
而是减少客户端和服务间的往来。API gateway 模式不等同与 Facade 模式,我们可以使用如 Future 之类的调用,甚至返回不完整数据。
2、SOA注重水平服务,微服务注重垂直服务
本文作者:张永清 来源出处:https://www.cnblogs.com/laoqing/p/13042432.html
SOA 设计喜欢给服务分层(如 Service Layers 模式)。我们常常见到一个 Entity 服务层的设计,美其名曰 Data Access Layer。这种设计要求所有的服务都通过这个 Entity 服务层。来获取数据。这种设计非常不灵活,比如每次数据层的改动都可能影响到所有业务层的服务。而每个微服务通常有它自己独立的 Data Store。我们在拆分数据库时可以适当的做些去范式化,让它不需要依赖其他服务的数据。
微服务通常是直接面对用户的,每个微服务通常直接为用户提供某个功能。类似的功能可能针对手机有一个服务,针对机顶盒是另外一个服务。在 SOA 设计模式中这种情况通常会用到 Multi-ChannelEndpoint 的模式返回一个大而全的结果兼顾到所有的客户端的需求。
3、SOA注重自上而下,微服务注重自下而上
SOA 架构在设计开始时会先定义好服务合同。它喜欢集中管理所有的服务,包括集中管理业务逻辑,数据,流程,Schema 等。它使用 Enterprise Inventory 和 Service Composition 等方法来集中管理服务。SOA 架构通常会预先把每个模块服务接口都定义好。模块系统间的通讯必须遵守这些接口,各服务是针对他们的调用者。
SOA 架构适用于 TO GAF 之类的架构方法论。
微服务则敏捷得多。只要用户用得到,就先把这个服务挖出来。然后针对性的,快速确认业务需求,快速开发迭代。
微服务与 SOA 有很多相同之处。两者都属于典型的、包含松耦合分布式组件的系统结构。在围绕着服务的概念创建架构这一方面,微服务提供了一种更清晰、定义更良好的方式。微服务的原则与敏捷软件开发思想是高度一致的,而它与 SOA 原则的演化的目标也是相同的,则减少传统的企业服务总线开发的高复杂性。两者之间最关键的区别在于,微服务专注于以自治的方式产生价值。但是两种架构背后的意图是不同的:SOA 尝试将应用集成,一般采用中央管理模式来确保各应用能够交互运作。微服务尝试部署新功能,快速有效地扩展开发团队。它着重于分散管理、代码再利用与自动化执行。
五、架构设计图
1、技术架构
从技术层面描述,主要是分层模型,例如持久层、数据层、逻辑层、应用层、表现层等,然后每层使用什么技术框架,例如Spring、hibernate、ioc、MVC、成熟的类库、中间件、WebService等,分别说明,要求这些技术能够将整个系统的主要实现概括
2、系统架构
指的完整系统的组成架构,例如系统分成几个部分?服务平台、管理门户、终端门户、ATM门户、外部系统以及接口、支撑系统等,将这些系统进行合理的划分。然后再进行功能分类细分,总之,将整个系统业务分解为逻辑功能模块,并且科学合理,就是系统架构
3、部署架构
指的是系统如何部署,包括应用的节点机器,网络、交换机,防火墙等。比如采用什么网络,nginx 部署几台,vip如何转发、APP应用部署多少个节点等。
4、数据架构
数据架构指导数据库的设计. 不仅仅要考虑开发中涉及到的数据库,实体模型,也要考虑物理架构中数据存储的设计。
5、代码架构
子系统代码架构主要为开发人员提供切实可行的指导,如果代码架构设计不足,就会造成影响全局的架构设计。比如公司内不同的开发团队使用不同的技术栈或者组件,结果公司整体架构设计就会失控。
代码架构主要定义:
①. 代码单元:
配置设计框架、类库。
②. 代码单元组织:
编码规范,编码的惯例。项目模块划分顶层文件结构设计,比如mvc设计。依赖关系
未完待续,后续会补充大数据相关的架构