热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

基于opencv的识别器

1问题背景生物识别技术被广泛用于政府、军队、银行、社会福利保障、电子商务、安全防务等领域。随着技术的进一步成熟和社会认同度的提高,包含在生物识别技术的人脸识别技术将应用在更多的领域




1 问题背景

生物识别技术被广泛用于政府、军队、银行、社会福利保障、电子商务、安全防务等领域。随着技术的进一步成熟和社会认同度的提高,包含在生物识别技术的人脸识别技术将应用在更多的领域,例如:
1、企业、住宅安全和管理。
2、电子护照及身份证。
3、公安、司法和刑侦。
4、自助服务。
5、信息安全。
在本次实验将完成以下内容:
1用opencv自带的Harr级联分类器进行人脸、人眼与微笑识别
2训练自己的级联分类器,训练过程参考自官网:https://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html


2 环境配置

2.1 安装opencv

activate tf2
pip install opencv-pytho

2.2 测试

安装成功后可在tf2(tensorflow2.0)环境下测试
测试截图


3 人脸检测

可以看到opencv自带的识别模型如下:

在这里插入图片描述


3.1 静态图片检测

eg.py:

# 导入opencv-python
import cv2
# 读入一张图片,引号里为图片的路径,需要你自己手动设置
img = cv2.imread('dogs.jpg')
# 导入人脸级联分类器引擎,'.xml'文件里包含训练出来的人脸特征
face_engine = cv2.CascadeClassifier('dog_cascade.xml')
# 用人脸级联分类器引擎进行人脸识别,返回的faces为人脸坐标列表,1.3是放大比例,5是重复识别次数
faces = face_engine.detectMultiScale(img,scaleFactor=1.3,minNeighbors=5)
# 对每一张脸,进行如下操作
for (x,y,w,h) in faces:
# 画出人脸框,蓝色(BGR色彩体系),画笔宽度为2
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
# 在"img2"窗口中展示效果图
cv2.imshow('img2',img)
# 监听键盘上任何按键,如有按键即退出并关闭窗口,并将图片保存为output.jpg
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite('output.jpg',img)

测试输入:
在这里插入图片描述
测试输出:
在这里插入图片描述


3.2 动态摄像头检测

import cv2
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade_eye.xml')
smile_cascade = cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade_smile.xml')
# 调用摄像头摄像头
cap = cv2.VideoCapture(0)
while(True):
# 获取摄像头拍摄到的画面
ret, frame = cap.read()
faces = face_cascade.detectMultiScale(frame, 1.3, 2)
img = frame
for (x,y,w,h) in faces:
img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
face_area = img[y:y+h, x:x+w]
## 人眼检测
eyes = eye_cascade.detectMultiScale(face_area,1.3,10)
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(face_area,(ex,ey),(ex+ew,ey+eh),(0,255,0),1)
## 微笑检测
smiles = smile_cascade.detectMultiScale(face_area,scaleFactor= 1.16,minNeighbors=65,minSize=(25, 25),flags=cv2.CASCADE_SCALE_IMAGE)
for (ex,ey,ew,eh) in smiles:
cv2.rectangle(face_area,(ex,ey),(ex+ew,ey+eh),(0,0,255),1)
cv2.putText(img,'Smile',(x,y-7), 3, 1.2, (0, 0, 255), 2, cv2.LINE_AA)
# 实时展示效果画面
cv2.imshow('frame2',img)
# 每5毫秒监听一次键盘动作
if cv2.waitKey(5) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()

检测结果:
在这里插入图片描述


4 创造自己的级联分类器——dog face detection

4.1 收集样本,处理样本


收集正、负样本

关于正样本的收集,我收集了100个正样本,照片是从百度和必应下载的。关于负样本,只要不含有正样本图片即可,这里采用猫和人脸、不含狗的场景等图片,收集了300张图片。
在rename_resize_images.py程序中对照片进行批处理:重命名、尺寸缩小。按照OpenCV官方建议正样本是20像素x20像素。
正样本:
在这里插入图片描述
尺寸缩小后的正样本:
在这里插入图片描述
负样本:
在这里插入图片描述


样本处理

负样本除了灰度以外不必调整,分辨率自由。
把正样本也就是有狗狗的图片放在了pos文件夹中,把消极图片放在neg文件夹中。
然后创建正负样本目录,格式如下:
<绝对路径 1 0 0 w h > 其中w=20 h=20
在这里插入图片描述
在这里插入图片描述
使用时更改rootdir即可,即修改文件路径即可,文件路径为你的正样本保存的目录或者负样本保存的目录,以下为正样本pos.txt生成的程序:

#!/usr/bin env python
import os
rootdir = 'pos\\'
files = os.listdir(rootdir)
name = os.path.split(files[0])
with open(rootdir+'pos.txt','w+') as f:
for file in files:
name = os.path.split(file)
if name[1]=='pos.txt':
continue
print file
f.write("pos\\"+name[1]+' '+'1 0 0 20 20\n'

以下为生成负样本neg.txt的程序:

#!/usr/bin env python
import os
rootdir = 'neg\\'
files = os.listdir(rootdir)
name = os.path.split(files[0])
with open(rootdir+'neg.dat','w+') as f:
for file in files:
name = os.path.split(file)
if name[1]=='neg.txt':
continue
print file
f.write("neg\\"+name[1]+'\n')

生成正样本pos.dat 和neg.dat 后,将包含正样本的文件夹和负样本的文件夹以及pos.dat neg.dat 文件移动到opencv\build\x64\vc12\bin\ 目录。


4.2 创建向量

pop.txt 是上一步骤的正向量目录文件
num是其中的正样本数量,
w是宽h高
pos.vec是生成的正向量文件名

cd pos.txt所在目录
opencv_createsamples -info pos.txt -num 100 -w 20 -h 20 -vec pos.ve

4.3 训练分类器

opencv_createsamples各个参数的意义:
-data:指定保存训练结果的文件夹
-vec:指定正样本集
-bg:指定负样本的描述文件夹
-numPos:指定每一级参与训练的正样本的数目
-numNeg:指定每一级参与训练的负样本的数目(可大于负样本图片的总数)
-numStage:训练级数
-w:正样本宽
-h:正样本高

mkdir data
$ opencv_traincascade -data data -vec pos.vec -bg neg.txt -numPos 85 -numNeg 400 -numStage 15 -w 20 -h 20

等待运行结束,打开data就可以看见训练的分类器:
在这里插入图片描述


5 测试分类器

5.1 静态图片检测

对人脸识别的测试进行修改,替换模型为cascade.xml

import os
import cv2
# 测试图片
imgName = "dogs.jpg"
xmlFileName = "cascade.xml"
if not (os.path.exists(imgName) and os.path.exists(xmlFileName)):
print("图片或检测器文件不存在")
# 测试训练的检测器是否可用
windowName = "object detect"
img = cv2.imread(imgName)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cascade = cv2.CascadeClassifier(xmlFileName)
rects = cascade.detectMultiScale(gray)
if len(rects) > 0:
print('========================检测到%d个目标===============================' % (len(rects)))
else:
print('没检测到东西')
for x, y, width, height in rects:
cv2.rectangle(img, (x, y), (x + width, y + height),(0, 255, 0),2)
# 在"img2"窗口中展示效果图
cv2.imshow('img2',img)
# 监听键盘上任何按键,如有按键即退出并关闭窗口,并将图片保存为output.jpg
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite('output.jpg',img

测试图像:
在这里插入图片描述
测试结果:
在这里插入图片描述在这里插入图片描述


5.2 动态摄像头检测

import cv2
face_cascade = cv2.CascadeClassifier('cascade.xml')
# 调用摄像头摄像头
cap = cv2.VideoCapture(0)
while(True):
# 获取摄像头拍摄到的画面
ret, frame = cap.read()
faces = face_cascade.detectMultiScale(frame, 1.3, 5)
img = frame
for (x,y,w,h) in faces:
img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
# 实时展示效果画面
cv2.imshow('frame2',img)
# 每5毫秒监听一次键盘动作
if cv2.waitKey(5) & 0xFF == ord('q'):
break
# 最后,关闭所有窗口
cap.release()
cv2.destroyAllWindows()

测试结果:
在这里插入图片描述


6 出现问题及解决

过程中有出现识别不到的情况,需要调整
在这里插入图片描述

中的1.3(比例因子)


7 实验总结

通过本次实验,测试了opencv的人脸检测相关模型,并创建了自己的简单的狗脸检测的模型,从环境搭建、版本兼容性、模型搭建等问题上遇到的很多bug,但是最终得到解决。
本次实验得到的模型仅为狗狗的脸的检测,而不是辩识,即只能框出脸的位置,无法判断狗的名字,品种等信息。



推荐阅读
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • Python 异步编程:ASGI 服务器与框架详解
    自 Python 3.5 引入 async/await 语法以来,异步编程迅速崛起,吸引了大量开发者的关注。本文将深入探讨 ASGI(异步服务器网关接口)及其在现代 Python Web 开发中的应用,介绍主流的 ASGI 服务器和框架。 ... [详细]
  • Python自动化处理:从Word文档提取内容并生成带水印的PDF
    本文介绍如何利用Python实现从特定网站下载Word文档,去除水印并添加自定义水印,最终将文档转换为PDF格式。该方法适用于批量处理和自动化需求。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 本文详细介绍了如何使用Python编写爬虫程序,从豆瓣电影Top250页面抓取电影信息。文章涵盖了从基础的网页请求到处理反爬虫机制,再到多页数据抓取的全过程,并提供了完整的代码示例。 ... [详细]
  • 离线环境下的Python及其第三方库安装指南
    在项目开发中,有时会遇到电脑只能连接内网或完全无法联网的情况。本文将详细介绍如何在这种环境下安装Python及其所需的第三方库,确保开发工作的顺利进行。 ... [详细]
  • 根据最新发布的《互联网人才趋势报告》,尽管大量IT从业者已转向Python开发,但随着人工智能和大数据领域的迅猛发展,仍存在巨大的人才缺口。本文将详细介绍如何使用Python编写一个简单的爬虫程序,并提供完整的代码示例。 ... [详细]
  • 基于KVM的SRIOV直通配置及性能测试
    SRIOV介绍、VF直通配置,以及包转发率性能测试小慢哥的原创文章,欢迎转载目录?1.SRIOV介绍?2.环境说明?3.开启SRIOV?4.生成VF?5.VF ... [详细]
  • 本文介绍如何在现有网络中部署基于Linux系统的透明防火墙(网桥模式),以实现灵活的时间段控制、流量限制等功能。通过详细的步骤和配置说明,确保内部网络的安全性和稳定性。 ... [详细]
  • 在Python开发过程中,随着项目数量的增加,不同项目依赖于不同版本的库,容易引发依赖冲突。为了避免这些问题,并保持开发环境的整洁,可以使用Virtualenv和Virtualenvwrapper来创建和管理多个隔离的Python虚拟环境。 ... [详细]
  • 在学习网页爬虫时,使用Selenium进行自动化操作。初次安装selenium模块后,第二天运行代码时遇到了ImportError:无法从'selenium'导入名称'webdriver'。本文将详细解释该问题的原因及解决方案。 ... [详细]
  • 本文介绍如何使用 Python 的 xlrd 库读取 Excel 文件,并将其数据处理后存储到数据库中。通过实际案例,详细讲解了文件路径、合并单元格处理等常见问题。 ... [详细]
  • Python第三方库安装的多种途径及注意事项
    本文详细介绍了Python第三方库的几种常见安装方法,包括使用pip命令、集成开发环境(如Anaconda)以及手动文件安装,并提供了每种方法的具体操作步骤和适用场景。 ... [详细]
  • 本文探讨了Hive中内部表和外部表的区别及其在HDFS上的路径映射,详细解释了两者的创建、加载及删除操作,并提供了查看表详细信息的方法。通过对比这两种表类型,帮助读者理解如何更好地管理和保护数据。 ... [详细]
author-avatar
用户gum5gltoo8
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有