热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

基于ZooKeeper搭建Hadoop高可用集群的教程图解

Hadoop高可用(HighAvailability)分为HDFS高可用和YARN高可用,两者的实现基本类似,但HDFSNameNode对数据存储及其一致性的要求比YARNResourceManger高得多,所以它的实现也更加复杂,下面给大家详细介绍,感兴趣的一起看看吧

一、高可用简介

Hadoop 高可用 (High Availability) 分为 HDFS 高可用和 YARN 高可用,两者的实现基本类似,但 HDFS NameNode 对数据存储及其一致性的要求比 YARN ResourceManger 高得多,所以它的实现也更加复杂,故下面先进行讲解:

1.1 高可用整体架构

HDFS 高可用架构如下:

图片引用自: https://www.edureka.co/blog/how-to-set-up-hadoop-cluster-with-hdfs-high-availability/

HDFS 高可用架构主要由以下组件所构成:

Active NameNode 和 Standby NameNode:两台 NameNode 形成互备,一台处于 Active 状态,为主 NameNode,另外一台处于 Standby 状态,为备 NameNode,只有主 NameNode 才能对外提供读写服务。

  • 主备切换控制器 ZKFailoverController:ZKFailoverController 作为独立的进程运行,对 NameNode 的主备切换进行总体控制。ZKFailoverController 能及时检测到 NameNode 的健康状况,在主 NameNode 故障时借助 Zookeeper 实现自动的主备选举和切换,当然 NameNode 目前也支持不依赖于 Zookeeper 的手动主备切换。
  • Zookeeper 集群:为主备切换控制器提供主备选举支持。共享存储系统:共享存储系统是实现 NameNode 的高可用最为关键的部分,共享存储系统保存了 NameNode 在运行过程中所产生的 HDFS 的元数据。
  • 主 NameNode 和 NameNode 通过共享存储系统实现元数据同步。在进行主备切换的时候,新的主 NameNode 在确认元数据完全同步之后才能继续对外提供服务。
  • DataNode 节点:除了通过共享存储系统共享 HDFS 的元数据信息之外,主 NameNode 和备 NameNode 还需要共享 HDFS 的数据块和 DataNode 之间的映射关系。
  • DataNode 会同时向主 NameNode 和备 NameNode 上报数据块的位置信息。

1.2 基于 QJM 的共享存储系统的数据同步机制分析

目前 Hadoop 支持使用 Quorum Journal Manager (QJM) 或 Network File System (NFS) 作为共享的存储系统,这里以 QJM 集群为例进行说明:Active NameNode 首先把 EditLog 提交到 JournalNode 集群,然后 Standby NameNode 再从 JournalNode 集群定时同步 EditLog,当 Active NameNode 宕机后, Standby NameNode 在确认元数据完全同步之后就可以对外提供服务。

需要说明的是向 JournalNode 集群写入 EditLog 是遵循 “过半写入则成功” 的策略,所以你至少要有3个 JournalNode 节点,当然你也可以继续增加节点数量,但是应该保证节点总数是奇数。同时如果有 2N+1 台 JournalNode,那么根据过半写的原则,最多可以容忍有 N 台 JournalNode 节点挂掉。

1.3 NameNode 主备切换

NameNode 实现主备切换的流程下图所示:

HealthMonitor 初始化完成之后会启动内部的线程来定时调用对应 NameNode 的 HAServiceProtocol RPC 接口的方法,对 NameNode 的健康状态进行检测。

HealthMonitor 如果检测到 NameNode 的健康状态发生变化,会回调 ZKFailoverController 注册的相应方法进行处理。

如果 ZKFailoverController 判断需要进行主备切换,会首先使用 ActiveStandbyElector 来进行自动的主备选举。

ActiveStandbyElector 与 Zookeeper 进行交互完成自动的主备选举。

ActiveStandbyElector 在主备选举完成后,会回调 ZKFailoverController 的相应方法来通知当前的 NameNode 成为主 NameNode 或备 NameNode。

ZKFailoverController 调用对应 NameNode 的 HAServiceProtocol RPC 接口的方法将 NameNode 转换为 Active 状态或 Standby 状态。

1.4 YARN高可用

YARN ResourceManager 的高可用与 HDFS NameNode 的高可用类似,但是 ResourceManager 不像 NameNode ,没有那么多的元数据信息需要维护,所以它的状态信息可以直接写到 Zookeeper 上,并依赖 Zookeeper 来进行主备选举。

二、集群规划

按照高可用的设计目标:需要保证至少有两个 NameNode (一主一备) 和 两个 ResourceManager (一主一备) ,同时为满足“过半写入则成功”的原则,需要至少要有3个 JournalNode 节点。这里使用三台主机进行搭建,集群规划如下:

三、前置条件所有服务器都安装有JDK,安装步骤可以参见:Linux下JDK的安装;搭建好ZooKeeper集群,搭建步骤可以参见:Zookeeper单机环境和集群环境搭建所有服务器之间都配置好SSH免密登录。

四、集群配置

4.1 下载并解压

下载Hadoop。这里我下载的是CDH版本Hadoop,下载地址为:http://archive.cloudera.com/cdh5/cdh/5/

# tar -zvxf hadoop-2.6.0-cdh5.15.2.tar.gz

4.2 配置环境变量

编辑profile文件:

# vim /etc/profile

增加如下配置:

export HADOOP_HOME=/usr/app/hadoop-2.6.0-cdh5.15.2export PATH=${HADOOP_HOME}/bin:$PATH

执行source命令,使得配置立即生效:

# source /etc/profile

4.3 修改配置

进入${HADOOP_HOME}/etc/hadoop目录下,修改配置文件。各个配置文件内容如下:

1. hadoop-env.sh

# 指定JDK的安装位置export JAVA_HOME=/usr/java/jdk1.8.0_201/

2. core-site.xml


 
 
 fs.defaultFS
 hdfs://hadoop001:8020
 
 
 
 hadoop.tmp.dir
 /home/hadoop/tmp
 
 
 
 ha.zookeeper.quorum
 hadoop001:2181,hadoop002:2181,hadoop002:2181
 
 
 
 ha.zookeeper.session-timeout.ms
 10000
 

3. hdfs-site.xml


 
 
 dfs.replication
 3
 
 
 
 dfs.namenode.name.dir
 /home/hadoop/namenode/data
 
 
 
 dfs.datanode.data.dir
 /home/hadoop/datanode/data
 
 
 
 dfs.nameservices
 mycluster
 
 
 
 dfs.ha.namenodes.mycluster
 nn1,nn2
 
 
 
 dfs.namenode.rpc-address.mycluster.nn1
 hadoop001:8020
 
 
 
 dfs.namenode.rpc-address.mycluster.nn2
 hadoop002:8020
 
 
 
 dfs.namenode.http-address.mycluster.nn1
 hadoop001:50070
 
 
 
 dfs.namenode.http-address.mycluster.nn2
 hadoop002:50070
 
 
 
 dfs.namenode.shared.edits.dir
 qjournal://hadoop001:8485;hadoop002:8485;hadoop003:8485/mycluster
 
 
 
 dfs.journalnode.edits.dir
 /home/hadoop/journalnode/data
 
 
 
 dfs.ha.fencing.methods
 sshfence
 
 
 
 dfs.ha.fencing.ssh.private-key-files
 /root/.ssh/id_rsa
 
 
 
 dfs.ha.fencing.ssh.connect-timeout
 30000
 
 
 
 dfs.client.failover.proxy.provider.mycluster
 org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider
 
 
 
 dfs.ha.automatic-failover.enabled
 true
 

4. yarn-site.xml


 
 
 yarn.nodemanager.aux-services
 mapreduce_shuffle
 
 
 
 yarn.log-aggregation-enable
 true
 
 
 
 yarn.log-aggregation.retain-seconds
 86400
 
 
 
 yarn.resourcemanager.ha.enabled
 true
 
 
 
 yarn.resourcemanager.cluster-id
 my-yarn-cluster
 
 
 
 yarn.resourcemanager.ha.rm-ids
 rm1,rm2
 
 
 
 yarn.resourcemanager.hostname.rm1
 hadoop002
 
 
 
 yarn.resourcemanager.hostname.rm2
 hadoop003
 
 
 
 yarn.resourcemanager.webapp.address.rm1
 hadoop002:8088
 
 
 
 yarn.resourcemanager.webapp.address.rm2
 hadoop003:8088
 
 
 
 yarn.resourcemanager.zk-address
 hadoop001:2181,hadoop002:2181,hadoop003:2181
 
 
 
 yarn.resourcemanager.recovery.enabled
 true
 
 
 
 yarn.resourcemanager.store.class
 org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore
 

5. mapred-site.xml


 
 
 mapreduce.framework.name
 yarn
 

5. slaves

配置所有从属节点的主机名或IP地址,每行一个。所有从属节点上的DataNode服务和NodeManager服务都会被启动。

hadoop001
hadoop002
hadoop003

4.4 分发程序

将Hadoop安装包分发到其他两台服务器,分发后建议在这两台服务器上也配置一下Hadoop的环境变量。

# 将安装包分发到hadoop002
scp -r /usr/app/hadoop-2.6.0-cdh5.15.2/ hadoop002:/usr/app/
# 将安装包分发到hadoop003
scp -r /usr/app/hadoop-2.6.0-cdh5.15.2/ hadoop003:/usr/app/

5.1 启动ZooKeeper

分别到三台服务器上启动ZooKeeper服务:

 zkServer.sh start

5.2 启动Journalnode

分别到三台服务器的的${HADOOP_HOME}/sbin目录下,启动journalnode进程:

hadoop-daemon.sh start journalnode

5.3 初始化NameNode

hadop001上执行NameNode初始化命令:

hdfs namenode -format

执行初始化命令后,需要将NameNode元数据目录的内容,复制到其他未格式化的NameNode上。元数据存储目录就是我们在hdfs-site.xml中使用dfs.namenode.name.dir属性指定的目录。这里我们需要将其复制到hadoop002上:

 scp -r /home/hadoop/namenode/data hadoop002:/home/hadoop/namenode/

5.4 初始化HA状态

在任意一台NameNode上使用以下命令来初始化ZooKeeper中的HA状态:

hdfs zkfc -formatZK

5.5 启动HDFS

进入到hadoop001${HADOOP_HOME}/sbin目录下,启动HDFS。此时hadoop001hadoop002上的NameNode服务,和三台服务器上的DataNode服务都会被启动:

start-dfs.sh

5.6 启动YARN

进入到hadoop002${HADOOP_HOME}/sbin目录下,启动YARN。此时hadoop002上的ResourceManager服务,和三台服务器上的NodeManager服务都会被启动:

start-yarn.sh

需要注意的是,这个时候hadoop003上的ResourceManager服务通常是没有启动的,需要手动启动:

yarn-daemon.sh start resourcemanager

六、查看集群

6.1 查看进程

成功启动后,每台服务器上的进程应该如下:

[root@hadoop001 sbin]# jps
4512 DFSZKFailoverController
3714 JournalNode
4114 NameNode
3668 QuorumPeerMain
5012 DataNode
4639 NodeManager
[root@hadoop002 sbin]# jps
4499 ResourceManager
4595 NodeManager
3465 QuorumPeerMain
3705 NameNode
3915 DFSZKFailoverController
5211 DataNode
3533 JournalNode
[root@hadoop003 sbin]# jps
3491 JournalNode
3942 NodeManager
4102 ResourceManager
4201 DataNode
3435 QuorumPeerMain

6.2 查看Web UI

HDFS和YARN的端口号分别为500708080,界面应该如下:

此时hadoop001上的NameNode处于可用状态:

而hadoop002上的NameNode则处于备用状态:



hadoop002上的ResourceManager处于可用状态:



hadoop003上的ResourceManager则处于备用状态:



同时界面上也有Journal Manager的相关信息:


七、集群的二次启动

上面的集群初次启动涉及到一些必要初始化操作,所以过程略显繁琐。但是集群一旦搭建好后,想要再次启用它是比较方便的,步骤如下(首选需要确保ZooKeeper集群已经启动):

hadoop001启动 HDFS,此时会启动所有与 HDFS 高可用相关的服务,包括 NameNode,DataNode 和 JournalNode:

start-dfs.sh

hadoop002启动YARN:

start-yarn.sh

这个时候hadoop003上的ResourceManager服务通常还是没有启动的,需要手动启动:

yarn-daemon.sh start resourcemanager

参考资料

以上搭建步骤主要参考自官方文档:

HDFS High Availability Using the Quorum Journal ManagerResourceManager High Availability

总结

以上所述是小编给大家介绍的基于 ZooKeeper 搭建 Hadoop 高可用集群 的教程图解,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!


推荐阅读
  • 在Linux系统上构建Web服务器的详细步骤
    本文详细介绍了如何在Linux系统上搭建Web服务器的过程,包括安装Apache、PHP和MySQL等关键组件,以及遇到的一些常见问题及其解决方案。 ... [详细]
  • 本文详细介绍如何利用已搭建的LAMP(Linux、Apache、MySQL、PHP)环境,快速创建一个基于WordPress的内容管理系统(CMS)。WordPress是一款流行的开源博客平台,适用于个人或小型团队使用。 ... [详细]
  • 阿里云ecs怎么配置php环境,阿里云ecs配置选择 ... [详细]
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 远程过程调用(RPC)是一种允许客户端通过网络请求服务器执行特定功能的技术。它简化了分布式系统的交互,使开发者可以像调用本地函数一样调用远程服务,并获得返回结果。本文将深入探讨RPC的工作原理、发展历程及其在现代技术中的应用。 ... [详细]
  • 深入解析Hadoop的核心组件与工作原理
    本文详细介绍了Hadoop的三大核心组件:分布式文件系统HDFS、资源管理器YARN和分布式计算框架MapReduce。通过分析这些组件的工作机制,帮助读者更好地理解Hadoop的架构及其在大数据处理中的应用。 ... [详细]
  • 深入解析Spring Cloud微服务架构与分布式系统实战
    本文详细介绍了Spring Cloud在微服务架构和分布式系统中的应用,结合实际案例和最新技术,帮助读者全面掌握微服务的实现与优化。 ... [详细]
  • NFS(Network File System)即网络文件系统,是一种分布式文件系统协议,主要用于Unix和类Unix系统之间的文件共享。本文详细介绍NFS的配置文件/etc/exports和相关服务配置,帮助读者理解如何在Linux环境中配置NFS客户端。 ... [详细]
  • 本文探讨了Web开发与游戏开发之间的主要区别,旨在帮助开发者更好地理解两种开发领域的特性和需求。文章基于作者的实际经验和网络资料整理而成。 ... [详细]
  • window下kafka的安装以及测试
    目录一、安装JDK(需要安装依赖javaJDK)二、安装Kafka三、测试参考在Windows系统上安装消息队列kafka一、安装JDKÿ ... [详细]
  • 转自:http:www.yybug.comread-htm-tid-15324.html为什么使用Twisted? 如果你并不准备使用Twisted,你可能有很多异议。为什么使用T ... [详细]
  • Zookeeper面试常见问题解析
    本文详细介绍了Zookeeper中的ZAB协议、节点类型、ACL权限控制机制、角色分工、工作状态、Watch机制、常用客户端、分布式锁实现、默认通信框架以及消息广播和领导选举的流程。 ... [详细]
  • 1整合dubbo1.1e3-manager-Service1.1.1pom.xml排除jar在e3-manager-Service工程中添加dubbo依赖的jar包。 ... [详细]
  • 本文详细记录了一次 HBase RegionServer 异常宕机的情况,包括具体的错误信息和可能的原因分析。通过此案例,探讨了如何有效诊断并解决 HBase 中常见的 RegionServer 挂起问题。 ... [详细]
  • 本文详细介绍了 Apache ZooKeeper 的 FileTxnLog 类中的 setPreallocSize 方法,并提供了多个实际应用中的代码示例。通过这些示例,读者可以更好地理解如何在不同场景下合理设置日志文件的预分配大小。 ... [详细]
author-avatar
最佳牛牛1
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有