热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

基于深度学习的遥感应用

文章目录深度学习的发展过程深度学习在遥感中的应用基于深度学习的遥感样例库建设基于深度学习的遥感影像目标及场景检索基于深度学习的建筑物提取基于深度学习的密集建筑物自动检测基于深度学习

文章目录

  • 深度学习的发展过程
  • 深度学习在遥感中的应用
    • 基于深度学习的遥感样例库建设
    • 基于深度学习的遥感影像目标及场景检索
    • 基于深度学习的建筑物提取
    • 基于深度学习的密集建筑物自动检测
    • 基于深度学习的道路自动提取
    • 面向国产多视角卫星的深度学习
    • 基于多源遥感影像变化检测
  • 总结和展望
  • 参考


深度学习的发展过程

从2012年深度卷积神经网络(AlexNet)成功应用于图像识别以来,发展出多个改进的卷积神经网络构架,包括2014年牛津大学的VGG,Google公司的GoogleNet,2015年微软研究院Kaiming He推出的残差网络,网络层数越来越多,所得到的精度越来越高。

深度学习在遥感中的应用

计算机视觉与传统遥感任务的关联性
在这里插入图片描述
AI发展的三要素:算力,算法和数据。

基于深度学习的遥感样例库建设

深度学习能够获得高精度识别和得到业界高度认可,得益于ImageNet1000多万海量样本数据库。
深度学习方法要开展遥感目标提取和分类的研究,同样依赖于高精度大样本训练数据库。
样本标注的方法有:

  • 人工标注
  • 自动标注与人工校正
  • 开源数据(Openstreetmap)
  • 已有遥感产品数据(地表覆盖数据)

武汉大学建立了一套大范围、高精度、多类型开源样本数据库,涵盖航片/卫片、多种地物类型、多种标注方法的样本库,已达100多万样本,但还远远不够。在这里插入图片描述

基于深度学习的遥感影像目标及场景检索

直接运用AlexNet进行遥感影像目标和场景检索——肖志峰,2014年
在这里插入图片描述

基于深度学习的建筑物提取

季顺平团队:发展一种用于提取建筑物的全卷积网络,得到国际先进的检测结果。在航片实验中,查全率和准确度达到95%。蓝色掩膜为检测出的房屋,几乎不存在漏检和错检。
在这里插入图片描述

基于深度学习的密集建筑物自动检测

针对小而密集建筑物的检测,胡翔云团队提出了一种基于目标中心点生成候选框的新方法,该方法结合多盒评分模块和迭代定位细分模块来指导候选框的生成。
在这里插入图片描述

基于深度学习的道路自动提取

胡翔云:提出端到端通过学习置信图提取道路中心线
在这里插入图片描述
在这里插入图片描述

面向国产多视角卫星的深度学习

黄昕团队:提出一种三维卷积神经网络M2-3DCNN,充分利用ZY-3的多光谱和多角度信息,实现城市的精细分类。
在这里插入图片描述
基于ZY-3多视角影像,生产了我国50余大城市的3D地表覆盖数据集(百万级随机样本验证,总体精度~90%),以及每栋房屋的高度(中误差约5m)。将为城市地表覆盖深度学习提供千万级的训练样本库。
在这里插入图片描述
多源遥感数据深度学习:融合ZY-3和吉林一号夜间灯光影像,实现光谱-角度-昼夜的深度信息融合,实现我国大量城市的功能区分类,解译精度超过80%。
在这里插入图片描述

基于多源遥感影像变化检测

在这里插入图片描述

总结和展望

摄影测量与遥感是与人工智能最密切的学科之一。摄影测量本身与计算计算机视觉有很多相通的理论与方法。计算机视觉的快速发展无疑会推动摄影测量与遥感的发展,特别是一些难题的解决。
深度学习方法在通用目标识别方面取得重大突破,已经在人脸识别等领域得到广泛应用。但是,它在遥感图像识别与信息提取方面,虽然取得了一些研究进展,但是目前还鲜有商业化应用。当然遥感影像的目标识别比人脸识别要复杂和困难得多,遥感学者在努力工作,寻求突破,很多IT公司,如Facebook、微软、阿里、商汤、科大讯飞等也在参与攻关。
测绘遥感(行业与学科)面临挑战
1)由以服务于政府机构为主,到直接面向细分行业,乃至普通大众

  • IT与互联网企业等的强势挑战,在资本、技术等方面,它们具有优势;
  • 面向后两者的时候,传统的测绘地理信息企业与机构有时并不擅长

2)人工智能特别是计算机视觉与模式识别是目前IT领域十分火爆的领域

  • 跨界打劫是IT发展的常态,不要等着像许多领域被淘汰一样,传统测绘遥感领域被智能化技术所淘汰;测绘遥感领域要积极研究,开发基于人工智能在测绘与遥感领域的应用系统,加快实验和产业化;
  • 测绘与遥感已经是信息技术的重要组成部分,学科知识体系需要适应这一重大转变。

参考

https://mp.weixin.qq.com/s/A9qDWkGh8KZOuusl5bDlvQ


推荐阅读
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 每日一书丨AI圣经《深度学习》作者斩获2018年图灵奖
    2019年3月27日——ACM宣布,深度学习之父YoshuaBengio,YannLeCun,以及GeoffreyHinton获得了2018年的图灵奖, ... [详细]
  • 鄂维南:从数学角度,理解机器学习的「黑魔法」,并应用于更广泛的科学问题...
    作者|Hertz来源|科学智能AISI北京时间2022年7月8日晚上22:30,鄂维南院士在2022年的国际数学家大会上作一小时大会报告(plenarytalk)。今 ... [详细]
  • 知识图谱与图神经网络在金融科技中的应用探讨
    本文详细介绍了融慧金科AI Lab负责人张凯博士在2020爱分析·中国人工智能高峰论坛上的演讲,探讨了知识图谱与图神经网络模型如何在金融科技领域发挥重要作用。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 表面缺陷检测数据集综述及GitHub开源项目推荐
    本文综述了表面缺陷检测领域的数据集,并推荐了多个GitHub上的开源项目。通过对现有文献和数据集的系统整理,为研究人员提供了全面的资源参考,有助于推动该领域的发展和技术进步。 ... [详细]
  • 「爆干7天7夜」入门AI人工智能学习路线一条龙,真的不能再透彻了
    前言应广大粉丝要求,今天迪迦来和大家讲解一下如何去入门人工智能,也算是迪迦对自己学习人工智能这么多年的一个总结吧,本条学习路线并不会那么 ... [详细]
  • 微软等企业捐赠首批AI有声读物,助力视障人士
    12月2日,微软联合鹿音苑文化传播公司及150多名志愿者,共同捐赠了首批由人工智能生成的有声内容,旨在为视障人士提供更多文化资源。 ... [详细]
  • 本文详细介绍了 Java 网站开发的相关资源和步骤,包括常用网站、开发环境和框架选择。 ... [详细]
  • 兆芯X86 CPU架构的演进与现状(国产CPU系列)
    本文详细介绍了兆芯X86 CPU架构的发展历程,从公司成立背景到关键技术授权,再到具体芯片架构的演进,全面解析了兆芯在国产CPU领域的贡献与挑战。 ... [详细]
  • 深度学习中的Vision Transformer (ViT)详解
    本文详细介绍了深度学习中的Vision Transformer (ViT)方法。首先介绍了相关工作和ViT的基本原理,包括图像块嵌入、可学习的嵌入、位置嵌入和Transformer编码器等。接着讨论了ViT的张量维度变化、归纳偏置与混合架构、微调及更高分辨率等方面。最后给出了实验结果和相关代码的链接。本文的研究表明,对于CV任务,直接应用纯Transformer架构于图像块序列是可行的,无需依赖于卷积网络。 ... [详细]
  • TensorFlow入门上
    前置准备在阅读本文之前,请确定你已经了解了神经网络的基本结构以及前向传播、后向传播的基本原理,如果尚未了解,可以查看下文。神经网络初探​chrer.com也可以直接在我博客阅读Te ... [详细]
author-avatar
闲忙的飞
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有