作者:同亮uncle_847 | 来源:互联网 | 2023-08-18 22:45
这一篇写完很久了,因为识别率一直很低,没办法拿出来见大家,所以一直隐藏着,今天终于可以拿出来见见阳光了。哈喽,大家好,我是星星在线,我又来了,今天给大家带来的是极验验证码的selenium破解之法
这一篇写完很久了,因为识别率一直很低,没办法拿出来见大家,所以一直隐藏着,今天终于可以拿出来见见阳光了。
哈喽,大家好,我是星星在线,我又来了,今天给大家带来的是极验验证码的selenium破解之法,是不是有点小激动呢,小伙伴们等不了了,让我们赶紧直入主题吧。
虎嗅网注册
这次我们是拿虎嗅开刀,注册账号的时候需要滑动图片到缺口位置,这种验证码我们现在也经常遇到,这个就不用详细介绍了吧
)
full_image.save("full.jpg")
# 根据两个图片计算距离
distance = self.get_offset_distance(cut_image, full_image)
# 开始移动
self.start_move(distance)
# 如果出现error
try:
WebDriverWait(self.driver, 5, 0.5).until(EC.element_to_be_clickable((By.XPATH, '//div[@class="gt_ajax_tip gt_error"]')))
print("验证失败")
return
except TimeoutException as e:
pass
# 判断是否验证成功
try:
WebDriverWait(self.driver, 10, 0.5).until(EC.element_to_be_clickable((By.XPATH, '//div[@class="gt_ajax_tip gt_success"]')))
except TimeoutException:
print("again times")
time.sleep(5)
# 失败后递归执行拖动
self.analog_drag()
else:
# 成功后输入手机号,发送验证码
self.register()
# 获取图片和位置列表
def get_image_url(self, xpath):
link = re.compile('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;')
elements = self.driver.find_elements_by_xpath(xpath)
image_url = None
location = list()
for element in elements:
style = element.get_attribute("style")
groups = link.search(style)
url = groups[1]
x_pos = groups[2]
y_pos = groups[3]
location.append((int(x_pos), int(y_pos)))
image_url = url
return image_url, location
# 拼接图片
def mosaic_image(self, image_url, location):
resq = requests.get(image_url)
file = BytesIO(resq.content)
img = Image.open(file)
image_upper_lst = []
image_down_lst = []
for pos in location:
if pos[1] == 0:
# y值==0的图片属于上半部分,高度58
image_upper_lst.append(img.crop((abs(pos[0]), 0, abs(pos[0]) + 10, 58)))
else:
# y值==58的图片属于下半部分
image_down_lst.append(img.crop((abs(pos[0]), 58, abs(pos[0]) + 10, img.height)))
x_offset = 0
# 创建一张画布,x_offset主要为新画布使用
new_img = Image.new("RGB", (260, img.height))
for img in image_upper_lst:
new_img.paste(img, (x_offset, 58))
x_offset += img.width
x_offset = 0
for img in image_down_lst:
new_img.paste(img, (x_offset, 0))
x_offset += img.width
return new_img
# 判断颜色是否相近
def is_similar_color(self, x_pixel, y_pixel):
for i, pixel in enumerate(x_pixel):
if abs(y_pixel[i] - pixel) > 50:
return False
return True
# 计算距离
def get_offset_distance(self, cut_image, full_image):
for x in range(cut_image.width):
for y in range(cut_image.height):
cpx = cut_image.getpixel((x, y))
fpx = full_image.getpixel((x, y))
if not self.is_similar_color(cpx, fpx):
img = cut_image.crop((x, y, x + 50, y + 40))
# 保存一下计算出来位置图片,看看是不是缺口部分
img.save("1.jpg")
return x
# 开始移动
def start_move(self, distance):
element = self.driver.find_element_by_xpath('//div[@class="gt_slider_knob gt_show"]')
# 这里就是根据移动进行调试,计算出来的位置不是百分百正确的,加上一点偏移
distance -= element.size.get('width') / 2
distance += 15
# 按下鼠标左键
ActionChains(self.driver).click_and_hold(element).perform()
time.sleep(0.5)
while distance > 0:
if distance > 10:
# 如果距离大于10,就让他移动快一点
span = random.randint(5, 8)
else:
# 快到缺口了,就移动慢一点
span = random.randint(2, 3)
ActionChains(self.driver).move_by_offset(span, 0).perform()
distance -= span
time.sleep(random.randint(10,50)/100)
ActionChains(self.driver).move_by_offset(distance, 1).perform()
ActionChains(self.driver).release(on_element=element).perform()
def register(self):
element = self.driver.find_element_by_xpath('//input[@id="sms_username"]')
element.clear()
element.send_keys("手机号")
ele_captcha = self.driver.find_element_by_xpath('//span[@class="js-btn-captcha btn-captcha"]')
ele_captcha.click()
if __name__ == "__main__":
h = HuXiu()
h.visit_index()
这个移动move_by_offset,我之前的y值也是随机的[-5,5],我觉得这个模拟会更真实一点,总会上下抖动的嘛,结果就是因为这个考虑的太人性了,识别率非常低,改了好多范围,更大的、更小的,结果最后不偏移,竟然识别率奇高。TMD考虑的太人性化了竟然识别不了,我也是醉了。最后再把执行效果发一下吧