热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

《机器学习技法》AdaBoost算法

1AdaBoost的推导首先,直接给出AdaBoost算法的核心思想是:在原数据集上经过取样,来生成不同的弱分类器,最终再把
1 AdaBoost的推导

首先,直接给出AdaBoost算法的核心思想是:在原数据集上经过取样,来生成不同的弱分类器,最终再把这些弱分类器聚合起来。

关键问题有如下几个:

(1)取样怎样用数学方式表达出来;

(2)每次取样依据什么准则;

(3)最后怎么聚合这些弱分类器。

 

首先我们看第一个问题,如何表示取样?答案使用原数据集上的加权error。

假设我们对数据集D做的取样如下:

那么我们在新数据集上的01error可以等效为在原数据集上的加权error:

 

即我们取样相当于确定一组权重μ,对这个加权的error作最小化就能得到一个弱分类器g。

特别的,对于svm和逻辑回归,如果我们已知权重μ,我们可以用下面的方式解:

 

然后是第二个问题,依据什么原则来取样?或者说,怎样选择权重μ。

答案是多样性。即保证生成的每个弱分类器的差别越大,最后的聚合出来的强分类器就会越好。

如何来保证这一点呢?假设我的第t次取样生成了gt,第t+1次取样生成了g(t+1),取样的规则分别是μt和μt+1。即:

那么,要保证gt+1和gt有很大不同,有一个办法,就是使gt用在gt+1的数据集上时,效果很差。效果很差就是错误率是0.5,跟扔硬币一样:

 即:

所以,更新这个权重的方法是,对于t轮上分类错误的点,它的u应该更新为乘以总的分类正确率,对于分类正确的点,它的u应该更新为乘以总的分类错误率,注意这里的分类错误率是加权后的分类错误率(或者说在采样后的分类错误率):

这里我们使用另一种与上面等效的方法:

它有一定的物理意义:由于上一轮错误率总是小于0.5,因此方块t是大于1的。因此对于上一次分类正确的权重,除以方块t,减小了权重;对于上一次分类错误的权重,乘以方块t,放大了权重。

类似于水果课堂中老师教学生的例子。

 

第三个问题,得到了这些弱分类器,如何把他们聚合起来?AdaBoost使用的是Linear Blending的方式,其中的权重应该与方块t成正比,即这个弱分类器表现越好,权重应该越大:

 

另外,初始的u我们定为均匀的。

这样,AdaBoost算法如下:

 

2 AdaBoost的理论保证

 

转:https://www.cnblogs.com/coldyan/p/6502533.html



推荐阅读
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
  • 使用Numpy实现无外部库依赖的双线性插值图像缩放
    本文介绍如何仅使用Numpy库,通过双线性插值方法实现图像的高效缩放,避免了对OpenCV等图像处理库的依赖。文中详细解释了算法原理,并提供了完整的代码示例。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • LambdaMART算法详解
    本文详细介绍了LambdaMART算法的背景、原理及其在信息检索中的应用。首先回顾了LambdaMART的发展历程,包括其前身RankNet和LambdaRank,然后深入探讨了LambdaMART如何结合梯度提升决策树(GBDT)和LambdaRank来优化排序问题。 ... [详细]
  • 全能终端工具推荐:高效、免费、易用
    介绍一款备受好评的全能型终端工具——MobaXterm,它不仅功能强大,而且完全免费,适合各类用户使用。 ... [详细]
  • Python库在GIS与三维可视化中的应用
    Python库极大地扩展了GIS的能力,使其能够执行复杂的数据科学任务。本文探讨了几个关键的Python库,这些库不仅增强了GIS的核心功能,还推动了地理信息系统向更高层次的应用发展。 ... [详细]
  • AI炼金术:KNN分类器的构建与应用
    本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 支持向量机(SVM)在机器学习中的应用与学习心得
    支持向量机(SVM)是一种高效的二分类模型,其核心目标是通过寻找最优超平面来区分不同类别的数据点。在实际应用中,SVM能够有效地处理高维数据,并通过核技巧扩展到非线性分类问题。当新的数据点输入时,SVM会根据其相对于超平面的位置来判定其所属类别。训练过程中,SVM通过最大化间隔来确定最优超平面,从而提高模型的泛化能力。本文总结了SVM在机器学习中的应用及其学习心得,探讨了其在实际问题中的优势和局限性。 ... [详细]
  • 如何选择机器学习方法http:scikit-learn.orgstabletutorialmachine_learning_mapindex.html通用学习模式只需要先定义 ... [详细]
author-avatar
手机用户2602918637
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有