热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Java中常见数据结构Map之LinkedHashMap

前面已经说完了HashMap,接着来说下LinkedHashMap。看到Linked就知道它是有序的Map,即插入顺序和取出顺序是一致的,究竟是怎样做到的呢?下面就一
前面已经说完了HashMap, 接着来说下LinkedHashMap。
看到Linked就知道它是有序的Map,即插入顺序和取出顺序是一致的, 究竟是怎样做到的呢? 下面就一窥源码吧。

1, LinkedHashMap基本结构
LinkedHashMap是HashMap的一个子类,它保留插入的顺序,如果需要输出的顺序和输入时的相同,那么就选用LinkedHashMap。
LinkedHashMap是Map接口的哈希表和链接列表实现,具有可预知的迭代顺序。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变
LinkedHashMap实现与HashMap的不同之处在于,后者维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序。
注意,此实现不是同步的。如果多个线程同时访问链接的哈希映射,而其中至少一个线程从结构上修改了该映射,则它必须保持外部同步。

 

根据链表中元素的顺序可以分为:按插入顺序的链表,和按访问顺序(调用get方法)的链表。 

默认是按插入顺序排序,如果指定按访问顺序排序,那么调用get方法后,会将这次访问的元素移至链表尾部,不断访问可以形成按访问顺序排序的链表。  可以重写removeEldestEntry方法返回true值指定插入元素时移除最老的元素。

(以下源码截图皆为JDK7)
Image(4)
 
LinkedHashMap是继承HashMap, 也就是说LinkedHashMap的结构也是和HashMap那样(数组+链表)。
LinkedHashMap最大的差别在于Entry的定义上:
Image(5)
 
这里维护了一个before和after的Entry, 见名思意, 就是每个Entry都维护它的上一个元素和下一个元素的关系。这也是LinkedHashMap有序的关键所在。
接着我们再看下header的定义:
Image(6)
 
上图可以看出header的hash值为-1, 所以并不在hash表的table上。 其实header就是为了记录双向链表的头结点和尾节点。
LinkedHashMap的元素关系如下:
 
Image(7)
 
 
2, LinkedHashMap中主要方法介绍

LinkedHashMap中重写的方法不是很多, 请看下图:
Image(8)
 
以下部分截取自: http://www.cnblogs.com/xiaoxi/p/6170590.html   感谢原作者, 写的确实很好。     
假如有这么一段代码:
1 public static void main(String[] args)2 {
3 LinkedHashMap linkedHashMap =
4 new LinkedHashMap
();
5 linkedHashMap.put("111", "111"
);
6 linkedHashMap.put("222", "222"
);
7 }

首先是第3行~第4行,new一个LinkedHashMap出来,看一下做了什么:

通过源代码可以看出,在LinkedHashMap的构造方法中,实际调用了父类HashMap的相关构造方法来构造一个底层存放的table数组。

1 public LinkedHashMap() {
2 super
();
3 accessOrder = false
;
4 }
1 public HashMap() {
2 this.loadFactor =
DEFAULT_LOAD_FACTOR;
3 threshold = (int)(DEFAULT_INITIAL_CAPACITY *
DEFAULT_LOAD_FACTOR);
4 table = new
Entry[DEFAULT_INITIAL_CAPACITY];
5
init();
6 }

我们已经知道LinkedHashMap的Entry元素继承HashMap的Entry,提供了双向链表的功能。在上述HashMap的构造器中,最后会调用init()方法,进行相关的初始化,这个方法在HashMap的实现中并无意义,只是提供给子类实现相关的初始化调用。
LinkedHashMap重写了init()方法,在调用父类的构造方法完成构造后,进一步实现了对其元素Entry的初始化操作。

1 void init() {
2 header = new Entry(-1, null, null, null
);
3 header.before = header.after =
header;
4 }

这里出现了第一个多态:init()方法。尽管init()方法定义在HashMap中,但是由于:

1、LinkedHashMap重写了init方法

2、实例化出来的是LinkedHashMap

因此实际调用的init方法是LinkedHashMap重写的init方法。假设header的地址是0x00000000,那么初始化完毕,实际上是这样的:

注意这个header,hash值为-1,其他都为null,也就是说这个header不放在数组中,就是用来指示开始元素和标志结束元素的。

header的目的是为了记录第一个插入的元素是谁,在遍历的时候能够找到第一个元素。

五、LinkedHashMap存储元素

LinkedHashMap并未重写父类HashMap的put方法,而是重写了父类HashMap的put方法调用的子方法void recordAccess(HashMap m)  ,void addEntry(int hash, K key, V value, int bucketIndex) 和void createEntry(int hash, K key, V value, int bucketIndex),提供了自己特有的双向链接列表的实现。

继续看LinkedHashMap存储元素,也就是put("111","111")做了什么,首先当然是调用HashMap的put方法:

 1 //这个方法应该挺熟悉的,如果看了HashMap的解析的话 2 public V put(K key, V value) {
3 //key为null的情况 4 if (key == null
)
5 return
putForNullKey(value);
6 //通过key算hash,进而算出在数组中的位置,也就是在第几个桶中 7 int hash =
hash(key.hashCode());
8 int i =
indexFor(hash, table.length);
9 //查看桶中是否有相同的key值,如果有就直接用新值替换旧值,而不用再创建新的entry了10 for (Entry e = table[i]; e != null; e =
e.next) {
11
Object k;
12 if (e.hash == hash && ((k = e.key) == key ||
key.equals(k))) {
13 V oldValue =
e.value;
14 e.value =
value;
15 e.recordAccess(this
);
16 return
oldValue;
17
}
18
}
19
20 modCount++
;
21 //
上面度是熟悉的东西,最重要的地方来了,就是这个方法,LinkedHashMap执行到这里,addEntry()方法不会执行HashMap中的方法,
22 //而是执行自己类中的addEntry方法,23
addEntry(hash, key, value, i);
24 return null
;
25 }

第23行又是一个多态,因为LinkedHashMap重写了addEntry方法,因此addEntry调用的是LinkedHashMap重写了的方法:

 1 void addEntry(int hash, K key, V value, int bucketIndex) {
2 //调用create方法,将新元素以双向链表的的形式加入到映射中 3
createEntry(hash, key, value, bucketIndex);
4
5 //
Remove eldest entry if instructed, else grow capacity if appropriate
6 // 删除最近最少使用元素的策略定义 7 Entry eldest =
header.after;
8 if
(removeEldestEntry(eldest)) {
9
removeEntryForKey(eldest.key);
10 } else
{
11 if (size >=
threshold)
12 resize(2 *
table.length);
13
}
14 }

因为LinkedHashMap由于其本身维护了插入的先后顺序,因此LinkedHashMap可以用来做缓存,第7行~第9行是用来支持FIFO算法的,这里暂时不用去关心它。看一下createEntry方法: 

1 void createEntry(int hash, K key, V value, int bucketIndex) {
2 HashMap.Entry old =
table[bucketIndex];
3 Entry e = new Entry
(hash, key, value, old);
4 table[bucketIndex] =
e;
5 //将该节点插入到链表尾部6
e.addBefore(header);
7 size++
;
8 }
private void addBefore(Entry existingEntry) {
after
=
existingEntry;
before
=
existingEntry.before;
before.after
= this
;
after.before
= this
;
}

createEntry(int hash,K key,V value,int bucketIndex)方法覆盖了父类HashMap中的方法。这个方法不会拓展table数组的大小。该方法首先保留table中bucketIndex处的节点,然后调用Entry的构造方法(将调用到父类HashMap.Entry的构造方法)添加一个节点,即将当前节点的next引用指向table[bucketIndex] 的节点,之后调用的e.addBefore(header)是修改链表,将e节点添加到header节点之前。

第2行~第4行的代码和HashMap没有什么不同,新添加的元素放在table[i]上,差别在于LinkedHashMap还做了addBefore操作,这四行代码的意思就是让新的Entry和原链表生成一个双向链表。假设字符串111放在位置table[1]上,生成的Entry地址为0x00000001,那么用图表示是这样的:

如果熟悉LinkedList的源码应该不难理解,还是解释一下,注意下existingEntry表示的是header:

1、after=existingEntry,即新增的Entry的after=header地址,即after=0x00000000

2、before=existingEntry.before,即新增的Entry的before是header的before的地址,header的before此时是0x00000000,因此新增的Entry的before=0x00000000

3、before.after=this,新增的Entry的before此时为0x00000000即header,header的after=this,即header的after=0x00000001

4、after.before=this,新增的Entry的after此时为0x00000000即header,header的before=this,即header的before=0x00000001

这样,header与新增的Entry的一个双向链表就形成了。再看,新增了字符串222之后是什么样的,假设新增的Entry的地址为0x00000002,生成到table[2]上,用图表示是这样的:

 

就不细解释了,只要before、after清除地知道代表的是哪个Entry的就不会有什么问题。

注意,这里的插入有两重含义:

1.从table的角度看,新的entry需要插入到对应的bucket里,当有哈希冲突时,采用头插法将新的entry插入到冲突链表的头部。
2.从header的角度看,新的entry需要插入到双向链表的尾部。

总得来看,再说明一遍,LinkedHashMap的实现就是HashMap+LinkedList的实现方式,以HashMap维护数据结构,以LinkList的方式维护数据插入顺序。

3、LinkedHashMap读取元素

LinkedHashMap重写了父类HashMap的get方法,实际在调用父类getEntry()方法取得查找的元素后,再判断当排序模式accessOrder为true时(即按访问顺序排序),先将当前节点从链表中移除,然后再将当前节点插入到链表尾部。由于的链表的增加、删除操作是常量级的,故并不会带来性能的损失。

/**
* 通过key获取value,与HashMap的区别是:当LinkedHashMap按访问顺序排序的时候,会将访问的当前节点移到链表尾部(头结点的前一个节点)
*/public V get(Object key) {
// 调用父类HashMap的getEntry()方法,取得要查找的元素。
Entry e = (Entry
)getEntry(key);
if (e == null
)
return null
;
// 记录访问顺序。
e.recordAccess(this
);
return
e.value;
}
/**
* 在HashMap的put和get方法中,会调用该方法,在HashMap中该方法为空
* 在LinkedHashMap中,当按访问顺序排序时,该方法会将当前节点插入到链表尾部(头结点的前一个节点),否则不做任何事
*/void recordAccess(HashMap m) {
LinkedHashMap
lm = (LinkedHashMap
)m;
//当LinkedHashMap按访问排序时
if
(lm.accessOrder) {
lm.modCount
++
;
//移除当前节点
remove();
//将当前节点插入到头结点前面
addBefore(lm.header);
}
}
/**
* 移除节点,并修改前后引用
*/private void remove() {
before.after
=
after;
after.before
=
before;
}
private void addBefore(Entry existingEntry) {
after =
existingEntry;
before =
existingEntry.before;
before.after =
this;
after.before =
this;
}

4、利用LinkedHashMap实现LRU算法缓存

前面讲了LinkedHashMap添加元素,删除、修改元素就不说了,比较简单,和HashMap+LinkedList的删除、修改元素大同小异,下面讲一个新的内容。

LinkedHashMap可以用来作缓存,比方说LRUCache,看一下这个类的代码,很简单,就十几行而已:

public class LRUCache extends LinkedHashMap
{
public LRUCache(int
maxSize)
{
super(maxSize, 0.75F, true
);
maxElements
=
maxSize;
}

protected boolean
removeEldestEntry(java.util.Map.Entry eldest)
{
return size() >
maxElements;
}

private static final long serialVersiOnUID= 1L
;
protected int
maxElements;
}

顾名思义,LRUCache就是基于LRU算法的Cache(缓存),这个类继承自LinkedHashMap,而类中看到没有什么特别的方法,这说明LRUCache实现缓存LRU功能都是源自LinkedHashMap的。LinkedHashMap可以实现LRU算法的缓存基于两点:

1、LinkedList首先它是一个Map,Map是基于K-V的,和缓存一致

2、LinkedList提供了一个boolean值可以让用户指定是否实现LRU

那么,首先我们了解一下什么是LRU:LRU即Least Recently Used,最近最少使用,也就是说,当缓存满了,会优先淘汰那些最近最不常访问的数据。比方说数据a,1天前访问了;数据b,2天前访问了,缓存满了,优先会淘汰数据b。

我们看一下LinkedList带boolean型参数的构造方法:

public LinkedHashMap(int initialCapacity,
float
loadFactor,
boolean
accessOrder) {
super
(initialCapacity, loadFactor);
this.accessOrder =
accessOrder;
}

就是这个accessOrder,它表示:

(1)false,所有的Entry按照插入的顺序排列

(2)true,所有的Entry按照访问的顺序排列

第二点的意思就是,如果有1 2 3这3个Entry,那么访问了1,就把1移到尾部去,即2 3 1。每次访问都把访问的那个数据移到双向队列的尾部去,那么每次要淘汰数据的时候,双向队列最头的那个数据不就是最不常访问的那个数据了吗?换句话说,双向链表最头的那个数据就是要淘汰的数据。

"访问",这个词有两层意思:

1、根据Key拿到Value,也就是get方法

2、修改Key对应的Value,也就是put方法

首先看一下get方法,它在LinkedHashMap中被重写:

public V get(Object key) {
Entry
e = (Entry
)getEntry(key);
if (e == null
)
return null
;
e.recordAccess(
this
);
return
e.value;
}

然后是put方法,沿用父类HashMap的:

 1 public V put(K key, V value) {
2 if (key == null
)
3 return
putForNullKey(value);
4 int hash =
hash(key.hashCode());
5 int i =
indexFor(hash, table.length);
6 for (Entry e = table[i]; e != null; e =
e.next) {
7
Object k;
8 if (e.hash == hash && ((k = e.key) == key ||
key.equals(k))) {
9 V oldValue =
e.value;
10 e.value =
value;
11 e.recordAccess(this
);
12 return
oldValue;
13
}
14
}
15
16 modCount++
;
17
addEntry(hash, key, value, i);
18 return null
;
19 }

修改数据也就是第6行~第14行的代码。看到两端代码都有一个共同点:都调用了recordAccess方法且这个方法是Entry中的方法,也就是说每次的recordAccess操作的都是某一个固定的Entry。

recordAccess,顾名思义,记录访问,也就是说你这次访问了双向链表,我就把你记录下来,怎么记录?把你访问的Entry移到尾部去这个方法在HashMap中是一个空方法,就是用来给子类记录访问用的,看一下LinkedHashMap中的实现:

void recordAccess(HashMap m) {
LinkedHashMap
lm = (LinkedHashMap
)m;
if
(lm.accessOrder) {
lm.modCount
++
;
remove();
addBefore(lm.header);
}
}
private void remove() {
before.after
=
after;
after.before
=
before;
}
private void addBefore(Entry existingEntry) {
after
=
existingEntry;
before
=
existingEntry.before;
before.after
= this
;
after.before
= this
;
}

看到每次recordAccess的时候做了两件事情:

1、把待移动的Entry的前后Entry相连

2、把待移动的Entry移动到尾部

当然,这一切都是基于accessOrder=true的情况下。最后用一张图表示一下整个recordAccess的过程吧:

void recordAccess(HashMap m) 这个方法就是我们一开始说的,accessOrder为true时,就是使用的访问顺序,访问次数最少到访问次数最多,此时要做特殊处理。处理机制就是访问了一次,就将自己往后移一位,这里就是先将自己删除了,然后在把自己添加,这样,近期访问的少的就在链表的开始,最近访问的元素就会在链表的末尾。如果为false。那么默认就是插入顺序,直接通过链表的特点就能依次找到插入元素,不用做特殊处理。

5、代码演示LinkedHashMap按照访问顺序排序的效果

最后代码演示一下LinkedList按照访问顺序排序的效果,验证一下上一部分LinkedHashMap的LRU功能:

public static void main(String[] args)
{
LinkedHashMap
linkedHashMap =
new LinkedHashMap(16, 0.75f, true
);
linkedHashMap.put(
"111", "111"
);
linkedHashMap.put(
"222", "222"
);
linkedHashMap.put(
"333", "333"
);
linkedHashMap.put(
"444", "444"
);
loopLinkedHashMap(linkedHashMap);
linkedHashMap.get(
"111"
);
loopLinkedHashMap(linkedHashMap);
linkedHashMap.put(
"222", "2222"
);
loopLinkedHashMap(linkedHashMap);
}

public static void loopLinkedHashMap(LinkedHashMap
linkedHashMap)
{
Set
> set =
inkedHashMap.entrySet();
Iterator
> iterator =
set.iterator();

while
(iterator.hasNext())
{
System.out.print(iterator.next()
+ "\t"
);
}
System.out.println();
}

注意这里的构造方法要用三个参数那个且最后的要传入true,这样才表示按照访问顺序排序。看一下代码运行结果:

111=111    222=222    333=333    444=444    
222=222 333=333 444=444 111=111
333=333 444=444 111=111 222=2222

代码运行结果证明了两点:

1、LinkedList是有序的

2、每次访问一个元素(get或put),被访问的元素都被提到最后面去了

推荐阅读
  • android布局基础及范例(二):人人android九宫格布局
    人人android是人人网推出的一款优秀的手机应用软件,我们在使用的时候发现他的首页布局是九宫格模式的,让人觉得很别致,因为现在很多的android软件很少使用这种布局模式,人人andr ... [详细]
  • 转载自:http:www.blogjava.netCarpenterLeearchive20160427430268.html总体介绍之所以把HashSet和HashMa ... [详细]
  • 缓存这个东西就是为了提高运行速度的,由于缓存是在寸土寸金的内存里面,不是在硬盘里面,所以容量是很有限的。LRU这个算法就是把最近一次使用时间离现在时间最远的数据删除掉。先说说List:每 ... [详细]
  • 本文介绍了如何利用ObjectMapper实现JSON与JavaBean之间的高效转换。ObjectMapper是Jackson库的核心组件,能够便捷地将Java对象序列化为JSON格式,并支持从JSON、XML以及文件等多种数据源反序列化为Java对象。此外,还探讨了在实际应用中如何优化转换性能,以提升系统整体效率。 ... [详细]
  • Java中不同类型的常量池(字符串常量池、Class常量池和运行时常量池)的对比与关联分析
    在研究Java虚拟机的过程中,笔者发现存在多种类型的常量池,包括字符串常量池、Class常量池和运行时常量池。通过查阅CSDN、博客园等相关资料,对这些常量池的特性、用途及其相互关系进行了详细探讨。本文将深入分析这三种常量池的差异与联系,帮助读者更好地理解Java虚拟机的内部机制。 ... [详细]
  • 本文探讨了 Java 中 Pair 类的历史与现状。虽然 Java 标准库中没有内置的 Pair 类,但社区和第三方库提供了多种实现方式,如 Apache Commons 的 Pair 类和 JavaFX 的 javafx.util.Pair 类。这些实现为需要处理成对数据的开发者提供了便利。此外,文章还讨论了为何标准库未包含 Pair 类的原因,以及在现代 Java 开发中使用 Pair 类的最佳实践。 ... [详细]
  • Java集合详解5:深入理解LinkedHashMap和LRU缓存
    Java集合详解5:深入理解LinkedHashMap和LRU缓存今天我们来深入探索一下LinkedHashMap的底层原理,并且使用linkedhashmap来实现LRU缓存。具体代码在我的 ... [详细]
  • 我有3个来自RESEARCHS的映射值,指定要使用参考数据集填充的行中的范围。该研究 ... [详细]
  • HashTable与ConcurrentHashMap均可实现HashMap的功能,对外提供了键值对存储的数据结构。但是在内部结构及实现上有何区别,性能上的差异到底在哪里又是如何导致的 ... [详细]
  • 将学生对象和学生的归属地通过键与值存储到map集合中。importjava.util.HashMap;importjava.util.Iterator;importjava.uti ... [详细]
  • 优化后的标题:深入探讨网关安全:将微服务升级为OAuth2资源服务器的最佳实践
    本文深入探讨了如何将微服务升级为OAuth2资源服务器,以订单服务为例,详细介绍了在POM文件中添加 `spring-cloud-starter-oauth2` 依赖,并配置Spring Security以实现对微服务的保护。通过这一过程,不仅增强了系统的安全性,还提高了资源访问的可控性和灵活性。文章还讨论了最佳实践,包括如何配置OAuth2客户端和资源服务器,以及如何处理常见的安全问题和错误。 ... [详细]
  • 深入解析CAS机制:全面替代传统锁的底层原理与应用
    本文深入探讨了CAS(Compare-and-Swap)机制,分析了其作为传统锁的替代方案在并发控制中的优势与原理。CAS通过原子操作确保数据的一致性,避免了传统锁带来的性能瓶颈和死锁问题。文章详细解析了CAS的工作机制,并结合实际应用场景,展示了其在高并发环境下的高效性和可靠性。 ... [详细]
  • 使用Maven JAR插件将单个或多个文件及其依赖项合并为一个可引用的JAR包
    本文介绍了如何利用Maven中的maven-assembly-plugin插件将单个或多个Java文件及其依赖项打包成一个可引用的JAR文件。首先,需要创建一个新的Maven项目,并将待打包的Java文件复制到该项目中。通过配置maven-assembly-plugin,可以实现将所有文件及其依赖项合并为一个独立的JAR包,方便在其他项目中引用和使用。此外,该方法还支持自定义装配描述符,以满足不同场景下的需求。 ... [详细]
  • 在PHP中实现腾讯云接口签名,以完成人脸核身功能的对接与签名配置时,需要注意将文档中的POST请求改为GET请求。具体步骤包括:使用你的`secretKey`生成签名字符串`$srcStr`,格式为`GET faceid.tencentcloudapi.com?`,确保参数正确拼接,避免因请求方法错误导致的签名问题。此外,还需关注API的其他参数要求,确保请求的完整性和安全性。 ... [详细]
  • ***功能:排序*privatestaticvoidoutputRegionStatistics(HashMap<String,Integer>regionMap){ ... [详细]
author-avatar
龙娃爸爸3
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有