热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Java数据结构和算法(五):队列

队列(queue)是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插

队列(queue)是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。队列中没有元素时,称为空队列。

队列的数据元素又称为队列元素。在队列中插入一个队列元素称为入队,从队列中删除一个队列元素称为出队。因为队列只允许在一端插入,在另一端删除,所以只有最早进入队列的元素才能最先从队列中删除,故队列又称为先进先出(FIFO—first in first out)线性表。

比如我们去电影院排队买票,第一个进入排队序列的都是第一个买到票离开队列的人,而最后进入排队序列排队的都是最后买到票的。

在比如在计算机操作系统中,有各种队列在安静的工作着,比如打印机在打印列队中等待打印。

队列分为:

  ①、单向队列(Queue):只能在一端插入数据,另一端删除数据。

  ②、双向队列(Deque):每一端都可以进行插入数据和删除数据操作。

这里我们还会介绍一种队列——优先级队列,优先级队列是比栈和队列更专用的数据结构,在优先级队列中,数据项按照关键字进行排序,关键字最小(或者最大)的数据项往往在队列的最前面,而数据项在插入的时候都会插入到合适的位置以确保队列的有序。

Java模拟单向队列实现

在实现之前,我们先看下面几个问题:

  ①、与栈不同的是,队列中的数据不总是从数组的0下标开始的,移除一些队头front的数据后,队头指针会指向一个较高的下标位置,如下图:

  Java数据结构和算法(五):队列

  ②、我们再设计时,队列中新增一个数据时,队尾的指针rear 会向上移动,也就是向下标大的方向。移除数据项时,队头指针 front 向上移动。那么这样设计好像和现实情况相反,比如排队买电影票,队头的买完票就离开了,然后队伍整体向前移动。在计算机中也可以在队列中删除一个数之后,队列整体向前移动,但是这样做效率很差。我们选择的做法是移动队头和队尾的指针。

  ③、如果向第②步这样移动指针,相信队尾指针很快就移动到数据的最末端了,这时候可能移除过数据,那么队头会有空着的位置,然后新来了一个数据项,由于队尾不能再向上移动了,那该怎么办呢?如下图:

  Java数据结构和算法(五):队列

  为了避免队列不满却不能插入新的数据,我们可以让队尾指针绕回到数组开始的位置,这也称为“循环队列”。

  Java数据结构和算法(五):队列

  弄懂原理之后,Java实现代码如下:

package com.ys.datastructure;
 
public class MyQueue {
    private Object[] queArray;
    //队列总大小
    private int maxSize;
    //前端
    private int front;
    //后端
    private int rear;
    //队列中元素的实际数目
    private int nItems;
     
    public MyQueue(int s){
        maxSize = s;
        queArray = new Object[maxSize];
        front = 0;
        rear = -1;
        nItems = 0;
    }
     
    //队列中新增数据
    public void insert(int value){
        if(isFull()){
            System.out.println("队列已满!!!");
        }else{
            //如果队列尾部指向顶了,那么循环回来,执行队列的第一个元素
            if(rear == maxSize -1){
                rear = -1;
            }
            //队尾指针加1,然后在队尾指针处插入新的数据
            queArray[++rear] = value;
            nItems++;
        }
    }
     
    //移除数据
    public Object remove(){
        Object removeValue = null ;
        if(!isEmpty()){
            removeValue = queArray[front];
            queArray[front] = null;
            front++;
            if(frOnt== maxSize){
                front = 0;
            }
            nItems--;
            return removeValue;
        }
        return removeValue;
    }
     
    //查看对头数据
    public Object peekFront(){
        return queArray[front];
    }
     
     
    //判断队列是否满了
    public boolean isFull(){
        return (nItems == maxSize);
    }
     
    //判断队列是否为空
    public boolean isEmpty(){
        return (nItems ==0);
    }
     
    //返回队列的大小
    public int getSize(){
        return nItems;
    }
     
}

测试:

package com.ys.test;
 
import com.ys.datastructure.MyQueue;
 
public class MyQueueTest {
    public static void main(String[] args) {
        MyQueue queue = new MyQueue(3);
        queue.insert(1);
        queue.insert(2);
        queue.insert(3);//queArray数组数据为[1,2,3]
         
        System.out.println(queue.peekFront()); //1
        queue.remove();//queArray数组数据为[null,2,3]
        System.out.println(queue.peekFront()); //2
         
        queue.insert(4);//queArray数组数据为[4,2,3]
        queue.insert(5);//队列已满,queArray数组数据为[4,2,3]
    }
 
}

双端队列

双端队列就是一个两端都是结尾或者开头的队列, 队列的每一端都可以进行插入数据项和移除数据项,这些方法可以叫做:

  insertRight()、insertLeft()、removeLeft()、removeRight()

  如果严格禁止调用insertLeft()和removeLeft()(或禁用右端操作),那么双端队列的功能就和前面讲的栈功能一样。

  如果严格禁止调用insertLeft()和removeRight(或相反的另一对方法),那么双端队列的功能就和单向队列一样了。

优先级队列

优先级队列(priority queue)是比栈和队列更专用的数据结构,在优先级队列中,数据项按照关键字进行排序,关键字最小(或者最大)的数据项往往在队列的最前面,而数据项在插入的时候都会插入到合适的位置以确保队列的有序。

  优先级队列 是0个或多个元素的集合,每个元素都有一个优先权,对优先级队列执行的操作有:

  (1)查找

  (2)插入一个新元素

  (3)删除

  一般情况下,查找操作用来搜索优先权最大的元素,删除操作用来删除该元素 。对于优先权相同的元素,可按先进先出次序处理或按任意优先权进行。

  这里我们用数组实现优先级队列,这种方法插入比较慢,但是它比较简单,适用于数据量比较小并且不是特别注重插入速度的情况。

  后面我们会讲解堆,用堆的数据结构来实现优先级队列,可以相当快的插入数据。

  数组实现优先级队列,声明为int类型的数组,关键字是数组里面的元素,在插入的时候按照从大到小的顺序排列,也就是越小的元素优先级越高。

package com.ys.datastructure;
 
public class PriorityQue {
    private int maxSize;
    private int[] priQueArray;
    private int nItems;
     
    public PriorityQue(int s){
        maxSize = s;
        priQueArray = new int[maxSize];
        nItems = 0;
    }
     
    //插入数据
    public void insert(int value){
        int j;
        if(nItems == 0){
            priQueArray[nItems++] = value;
        }else{
            j = nItems -1;
            //选择的排序方法是插入排序,按照从大到小的顺序排列,越小的越在队列的顶端
            while(j >=0 && value > priQueArray[j]){
                priQueArray[j+1] = priQueArray[j];
                j--;
            }
            priQueArray[j+1] = value;
            nItems++;
        }
    }
     
    //移除数据,由于是按照大小排序的,所以移除数据我们指针向下移动
    //被移除的地方由于是int类型的,不能设置为null,这里的做法是设置为 -1
    public int remove(){
        int k = nItems -1;
        int value = priQueArray[k];
        priQueArray[k] = -1;//-1表示这个位置的数据被移除了
        nItems--;
        return value;
    }
     
    //查看优先级最高的元素
    public int peekMin(){
        return priQueArray[nItems-1];
    }
     
    //判断是否为空
    public boolean isEmpty(){
        return (nItems == 0);
    }
     
    //判断是否满了
    public boolean isFull(){
        return (nItems == maxSize);
    }
 
}

insert() 方法,先检查队列中是否有数据项,如果没有,则直接插入到下标为0的单元里,否则,从数组顶部开始比较,找到比插入值小的位置进行插入,并把 nItems 加1.

remove 方法直接获取顶部元素。

优先级队列的插入操作需要 O(N)的时间,而删除操作则需要O(1) 的时间,后面会讲解如何通过 堆 来改进插入时间。

总结

本篇博客我们介绍了队列的三种形式,分别是单向队列、双向队列以及优先级队列。其实大家听名字也可以听得出来他们之间的区别,单向队列遵循先进先出的原则,而且一端只能插入,另一端只能删除。双向队列则两端都可插入和删除,如果限制双向队列的某一段的方法,则可以达到和单向队列同样的功能。最后优先级队列,则是在插入元素的时候进行了优先级别排序,在实际应用中单项队列和优先级队列使用的比较多。后面讲解了堆这种数据结构,我们会用堆来实现优先级队列,改善优先级队列插入元素的时间。

  通过前面讲的栈以及本篇讲的队列这两种数据结构,我们稍微总结一下:

  ①、栈、队列(单向队列)、优先级队列通常是用来简化某些程序操作的数据结构,而不是主要作为存储数据的。

  ②、在这些数据结构中,只有一个数据项可以被访问。

  ③、栈允许在栈顶压入(插入)数据,在栈顶弹出(移除)数据,但是只能访问最后一个插入的数据项,也就是栈顶元素。

  ④、队列(单向队列)只能在队尾插入数据,对头删除数据,并且只能访问对头的数据。而且队列还可以实现循环队列,它基于数组,数组下标可以从数组末端绕回到数组的开始位置。

  ⑤、优先级队列是有序的插入数据,并且只能访问当前元素中优先级别最大(或最小)的元素。

  ⑥、这些数据结构都能由数组实现,但是可以用别的机制(后面讲的链表、堆等数据结构)实现。


推荐阅读
  • DAO(Data Access Object)模式是一种用于抽象和封装所有对数据库或其他持久化机制访问的方法,它通过提供一个统一的接口来隐藏底层数据访问的复杂性。 ... [详细]
  • 在多线程并发环境中,普通变量的操作往往是线程不安全的。本文通过一个简单的例子,展示了如何使用 AtomicInteger 类及其核心的 CAS 无锁算法来保证线程安全。 ... [详细]
  • 字节流(InputStream和OutputStream),字节流读写文件,字节流的缓冲区,字节缓冲流
    字节流抽象类InputStream和OutputStream是字节流的顶级父类所有的字节输入流都继承自InputStream,所有的输出流都继承子OutputStreamInput ... [详细]
  • 题目解析给定 n 个人和 n 种书籍,每个人都有一个包含自己喜好的书籍列表。目标是计算出满足以下条件的分配方案数量:1. 每个人都必须获得他们喜欢的书籍;2. 每本书只能分配给一个人。通过使用深度优先搜索算法,可以系统地探索所有可能的分配组合,确保每个分配方案都符合上述条件。该方法能够有效地处理这类组合优化问题,找到所有可行的解。 ... [详细]
  • 零拷贝技术是提高I/O性能的重要手段,常用于Java NIO、Netty、Kafka等框架中。本文将详细解析零拷贝技术的原理及其应用。 ... [详细]
  • Java高并发与多线程(二):线程的实现方式详解
    本文将深入探讨Java中线程的三种主要实现方式,包括继承Thread类、实现Runnable接口和实现Callable接口,并分析它们之间的异同及其应用场景。 ... [详细]
  • 如何在Java中使用DButils类
    这期内容当中小编将会给大家带来有关如何在Java中使用DButils类,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。D ... [详细]
  • 本文介绍了 .NET 中用于线程间通信的工具 WaitHandle 及其子类 ManualResetEvent 和 AutoResetEvent,并详细解释了线程池的概念及其在优化资源利用方面的优势。 ... [详细]
  • 本题探讨如何编写程序来计算一个数值的整数次方,涉及多种情况的处理。 ... [详细]
  • 在尝试对 QQmlPropertyMap 类进行测试驱动开发时,发现其派生类中无法正常调用槽函数或 Q_INVOKABLE 方法。这可能是由于 QQmlPropertyMap 的内部实现机制导致的,需要进一步研究以找到解决方案。 ... [详细]
  • 本文详细解析了客户端与服务器之间的交互过程,重点介绍了Socket通信机制。IP地址由32位的4个8位二进制数组成,分为网络地址和主机地址两部分。通过使用 `ipconfig /all` 命令,用户可以查看详细的IP配置信息。此外,文章还介绍了如何使用 `ping` 命令测试网络连通性,例如 `ping 127.0.0.1` 可以检测本机网络是否正常。这些技术细节对于理解网络通信的基本原理具有重要意义。 ... [详细]
  • 本文详细解析了Java类加载系统的父子委托机制。在Java程序中,.java源代码文件编译后会生成对应的.class字节码文件,这些字节码文件需要通过类加载器(ClassLoader)进行加载。ClassLoader采用双亲委派模型,确保类的加载过程既高效又安全,避免了类的重复加载和潜在的安全风险。该机制在Java虚拟机中扮演着至关重要的角色,确保了类加载的一致性和可靠性。 ... [详细]
  • 构建基础的字符串队列实现方法
    在探讨如何构建基础的字符串队列实现方法时,我们发现许多开发者在面对这一问题时常常感到困惑。实际上,队列的基本原理非常简单,即遵循先进先出的原则。然而,在具体实现过程中,需要注意的是Java语言中并没有指针的概念,因此需要通过嵌套类来模拟指针,进而构建链表结构。这种实现方式不仅能够有效地管理字符串数据,还能提升代码的可读性和维护性。 ... [详细]
  • 出库管理 | 零件设计中的状态模式学习心得与应用分析
    出库管理 | 零件设计中的状态模式学习心得与应用分析 ... [详细]
  • Python 程序转换为 EXE 文件:详细解析 .py 脚本打包成独立可执行文件的方法与技巧
    在开发了几个简单的爬虫 Python 程序后,我决定将其封装成独立的可执行文件以便于分发和使用。为了实现这一目标,首先需要解决的是如何将 Python 脚本转换为 EXE 文件。在这个过程中,我选择了 Qt 作为 GUI 框架,因为之前对此并不熟悉,希望通过这个项目进一步学习和掌握 Qt 的基本用法。本文将详细介绍从 .py 脚本到 EXE 文件的整个过程,包括所需工具、具体步骤以及常见问题的解决方案。 ... [详细]
author-avatar
mobiledu2502873473
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有