热门标签 | HotTags
当前位置:  开发笔记 > 小程序 > 正文

Java高并发四:无锁详细介绍

本文主要介绍Java高并发无锁的知识,这里整理了1.无锁类的原理详解2.无锁类的使用的知识,并讲解其原理,有需要的小伙伴可以参考下

在[高并发Java 一] 前言中已经提到了无锁的概念,由于在jdk源码中有大量的无锁应用,所以在这里介绍下无锁。

1 无锁类的原理详解

1.1 CAS

CAS算法的过程是这样:它包含3个参数CAS(V,E,N)。V表示要更新的变量,E表示预期值,N表示新值。仅当V
值等于E值时,才会将V的值设为N,如果V值和E值不同,则说明已经有其他线程做了更新,则当前线程什么
都不做。最后,CAS返回当前V的真实值。CAS操作是抱着乐观的态度进行的,它总是认为自己可以成功完成
操作。当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败。失败的线程
不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。基于这样的原理,CAS
操作即时没有锁,也可以发现其他线程对当前线程的干扰,并进行恰当的处理。

我们会发现,CAS的步骤太多,有没有可能在判断V和E相同后,正要赋值时,切换了线程,更改了值。造成了数据不一致呢?

事实上,这个担心是多余的。CAS整一个操作过程是一个原子操作,它是由一条CPU指令完成的。

1.2 CPU指令

CAS的CPU指令是cmpxchg

指令代码如下:

 /*
 accumulator = AL, AX, or EAX, depending on whether
 a byte, word, or doubleword comparison is being performed
 */
 if(accumulator == Destination) {
 ZF = 1;
 Destination = Source;
 }
 else {
 ZF = 0;
 accumulator = Destination;
 }

目标值和寄存器里的值相等的话,就设置一个跳转标志,并且把原始数据设到目标里面去。如果不等的话,就不设置跳转标志了。

Java当中提供了很多无锁类,下面来介绍下无锁类。

2 无所类的使用

我们已经知道,无锁比阻塞效率要高得多。我们来看看Java是如何实现这些无锁类的。

2.1. AtomicInteger

AtomicInteger和Integer一样,都继承与Number类

public class AtomicInteger extends Number implements java.io.Serializable

AtomicInteger里面有很多CAS操作,典型的有:

public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

这里来解释一下unsafe.compareAndSwapInt方法,他的意思是,对于this这个类上的偏移量为valueOffset的变量值如果与期望值expect相同,那么把这个变量的值设为update。
其实偏移量为valueOffset的变量就是value

static {
 try {
 valueOffset = unsafe.objectFieldOffset
  (AtomicInteger.class.getDeclaredField("value"));
 } catch (Exception ex) { throw new Error(ex); }
}

我们此前说过,CAS是有可能会失败的,但是失败的代价是很小的,所以一般的实现都是在一个无限循环体内,直到成功为止。

public final int getAndIncrement() {
 for (;;) {
  int current = get();
  int next = current + 1;
  if (compareAndSet(current, next))
  return current;
 }
 }

2.2 Unsafe

从类名就可知,Unsafe操作是非安全的操作,比如:

根据偏移量设置值(在刚刚介绍的AtomicInteger中已经看到了这个功能)
park()(把这个线程停下来,在以后的Blog中会提到)
底层的CAS操作
非公开API,在不同版本的JDK中,可能有较大差异

2.3. AtomicReference

前面已经提到了AtomicInteger,当然还有AtomicBoolean,AtomicLong等等,都大同小异。

这里要介绍的是AtomicReference。

AtomicReference是一种模板类

public class AtomicReference  implements java.io.Serializable

它可以用来封装任意类型的数据。

比如String

package test;

import java.util.concurrent.atomic.AtomicReference;


public class Test
{ 
 public final static AtomicReference atomicString = new AtomicReference("hosee");
 public static void main(String[] args)
 {
 for (int i = 0; i <10; i++)
 {
 final int num = i;
 new Thread() {
 public void run() {
 try
 {
 Thread.sleep(Math.abs((int)Math.random()*100));
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 if (atomicString.compareAndSet("hosee", "ztk"))
 {
 System.out.println(Thread.currentThread().getId() + "Change value");
 }else {
 System.out.println(Thread.currentThread().getId() + "Failed");
 }
 };
 }.start();
 }
 }
}

结果:

10Failed
13Failed
9Change value
11Failed
12Failed
15Failed
17Failed
14Failed
16Failed
18Failed

可以看到只有一个线程能够修改值,并且后面的线程都不能再修改。

2.4.AtomicStampedReference

我们会发现CAS操作还是有一个问题的

比如之前的AtomicInteger的incrementAndGet方法

public final int incrementAndGet() {
 for (;;) {
  int current = get();
  int next = current + 1;
  if (compareAndSet(current, next))
  return next;
 }
 }

假设当前value=1当某线程int current = get()执行后,切换到另一个线程,这个线程将1变成了2,然后又一个线程将2又变成了1。此时再切换到最开始的那个线程,由于value仍等于1,所以还是能执行CAS操作,当然加法是没有问题的,如果有些情况,对数据的状态敏感时,这样的过程就不被允许了。
此时就需要AtomicStampedReference类。

其内部实现一个Pair类来封装值和时间戳。

private static class Pair {
 final T reference;
 final int stamp;
 private Pair(T reference, int stamp) {
  this.reference = reference;
  this.stamp = stamp;
 }
 static  Pair of(T reference, int stamp) {
  return new Pair(reference, stamp);
 }
 }

这个类的主要思想是加入时间戳来标识每一次改变。

//比较设置 参数依次为:期望值 写入新值 期望时间戳 新时间戳

public boolean compareAndSet(V expectedReference,
     V newReference,
     int expectedStamp,
     int newStamp) {
 Pair current = pair;
 return
  expectedReference == current.reference &&
  expectedStamp == current.stamp &&
  ((newReference == current.reference &&
  newStamp == current.stamp) ||
  casPair(current, Pair.of(newReference, newStamp)));
 }

当期望值等于当前值,并且期望时间戳等于现在的时间戳时,才写入新值,并且更新新的时间戳。
这里举个用AtomicStampedReference的场景,可能不太适合,但是想不到好的场景了。
场景背景是,某公司给余额少的用户免费充值,但是每个用户只能充值一次。

package test;

import java.util.concurrent.atomic.AtomicStampedReference;

public class Test
{
 static AtomicStampedReference mOney= new AtomicStampedReference(
 19, 0);

 public static void main(String[] args)
 {
 for (int i = 0; i <3; i++)
 {
 final int timestamp = money.getStamp();
 new Thread()
 {
 public void run()
 {
 while (true)
 {
 while (true)
 {
 Integer m = money.getReference();
 if (m <20)
 {
 if (money.compareAndSet(m, m + 20, timestamp,
  timestamp + 1))
 {
  System.out.println("充值成功,余额:"
  + money.getReference());
  break;
 }
 }
 else
 {
 break;
 }
 }
 }
 };
 }.start();
 }

 new Thread()
 {
 public void run()
 {
 for (int i = 0; i <100; i++)
 {
 while (true)
 {
 int timestamp = money.getStamp();
 Integer m = money.getReference();
 if (m > 10)
 {
 if (money.compareAndSet(m, m - 10, timestamp,
  timestamp + 1))
 {
 System.out.println("消费10元,余额:"
  + money.getReference());
 break;
 }
 }else {
 break;
 }
 }
 try
 {
 Thread.sleep(100);
 }
 catch (Exception e)
 {
 // TODO: handle exception
 }
 }
 };
 }.start();
 }

}

解释下代码,有3个线程在给用户充值,当用户余额少于20时,就给用户充值20元。有100个线程在消费,每次消费10元。用户初始有9元,当使用AtomicStampedReference来实现时,只会给用户充值一次,因为每次操作使得时间戳+1。运行结果:

充值成功,余额:39
消费10元,余额:29
消费10元,余额:19
消费10元,余额:9

如果使用AtomicReference或者 Atomic Integer来实现就会造成多次充值。

充值成功,余额:39
消费10元,余额:29
消费10元,余额:19
充值成功,余额:39
消费10元,余额:29
消费10元,余额:19
充值成功,余额:39
消费10元,余额:29

2.5. AtomicIntegerArray

与AtomicInteger相比,数组的实现不过是多了一个下标。

public final boolean compareAndSet(int i, int expect, int update) {
        return compareAndSetRaw(checkedByteOffset(i), expect, update);
    }

它的内部只是封装了一个普通的array

private final int[] array;

里面有意思的是运用了二进制数的前导零来算数组中的偏移量。

shift = 31 - Integer.numberOfLeadingZeros(scale);

前导零的意思就是比如8位表示12,00001100,那么前导零就是1前面的0的个数,就是4。

具体偏移量如何计算,这里就不再做介绍了。

2.6. AtomicIntegerFieldUpdater

AtomicIntegerFieldUpdater类的主要作用是让普通变量也享受原子操作。

就比如原本有一个变量是int型,并且很多地方都应用了这个变量,但是在某个场景下,想让int型变成AtomicInteger,但是如果直接改类型,就要改其他地方的应用。AtomicIntegerFieldUpdater就是为了解决这样的问题产生的。

package test;

import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;


public class Test
{
 public static class V{
 int id;
 volatile int score;
 public int getScore()
 {
 return score;
 }
 public void setScore(int score)
 {
 this.score = score;
 }
 
 }
 public final static AtomicIntegerFieldUpdater vv = AtomicIntegerFieldUpdater.newUpdater(V.class, "score");
 
 public static AtomicInteger allscore = new AtomicInteger(0);
 
 public static void main(String[] args) throws InterruptedException
 {
 final V stu = new V();
 Thread[] t = new Thread[10000];
 for (int i = 0; i <10000; i++)
 {
 t[i] = new Thread() {
 @Override
 public void run()
 {
 if(Math.random()>0.4)
 {
 vv.incrementAndGet(stu);
 allscore.incrementAndGet();
 }
 }
 };
 t[i].start();
 }
 for (int i = 0; i <10000; i++)
 {
 t[i].join();
 }
 System.out.println("score="+stu.getScore());
 System.out.println("allscore="+allscore);
 }
}

上述代码将score使用 AtomicIntegerFieldUpdater变成 AtomicInteger。保证了线程安全。

这里使用allscore来验证,如果score和allscore数值相同,则说明是线程安全的。

小说明:

  1. Updater只能修改它可见范围内的变量。因为Updater使用反射得到这个变量。如果变量不可见,就会出错。比如如果某变量申明为private,就是不可行的。
  2. 为了确保变量被正确的读取,它必须是volatile类型的。如果我们原有代码中未申明这个类型,那么简单得申明一下就行,这不会引起什么问题。
  3. 由于CAS操作会通过对象实例中的偏移量直接进行赋值,因此,它不支持static字段(Unsafe.objectFieldOffset()不支持静态变量)。

推荐阅读
  • Android中高级面试必知必会,积累总结
    本文介绍了Android中高级面试的必知必会内容,并总结了相关经验。文章指出,如今的Android市场对开发人员的要求更高,需要更专业的人才。同时,文章还给出了针对Android岗位的职责和要求,并提供了简历突出的建议。 ... [详细]
  • 生成对抗式网络GAN及其衍生CGAN、DCGAN、WGAN、LSGAN、BEGAN介绍
    一、GAN原理介绍学习GAN的第一篇论文当然由是IanGoodfellow于2014年发表的GenerativeAdversarialNetworks(论文下载链接arxiv:[h ... [详细]
  • 无线认证设置故障排除方法及注意事项
    本文介绍了解决无线认证设置故障的方法和注意事项,包括检查无线路由器工作状态、关闭手机休眠状态下的网络设置、重启路由器、更改认证类型、恢复出厂设置和手机网络设置等。通过这些方法,可以解决无线认证设置可能出现的问题,确保无线网络正常连接和上网。同时,还提供了一些注意事项,以便用户在进行无线认证设置时能够正确操作。 ... [详细]
  • 本文详细介绍了相机防抖的设置方法和使用技巧,包括索尼防抖设置、VR和Stabilizer档位的选择、机身菜单设置等。同时解释了相机防抖的原理,包括电子防抖和光学防抖的区别,以及它们对画质细节的影响。此外,还提到了一些运动相机的防抖方法,如大疆的Osmo Action的Rock Steady技术。通过本文,你将更好地理解相机防抖的重要性和使用技巧,提高拍摄体验。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • Matlab:数学之美–绘制分形图形学习最好的动力是兴趣,所以我们先看看效果:这一篇与Java学习日记:数学之美-分形图形绘制有共同之处,只是所用的工具不同。clear;%不同的参 ... [详细]
  • A题这题贼水,直接暴力就可以了。用个bool数组记录一下,如果某一天,当前剩下的最大的出现了的话,就输出一段。1#include<stdio.h>2intn;3boolvi ... [详细]
  • 1引言在多线程并发编程中Synchronized一直是元老级角色,很多人都会称呼它为重量级锁,但是随着JavaSE1.6对Synchronized进行 ... [详细]
  • 本文目录一览:1、\mysybase.dump对数据库正常使用有影响吗 ... [详细]
  • 并发系列之CAS与原子操作1、CAS的概念2、Java实现CAS的原理-Unsafe类3、原子操作-AtomicInteger类源码简析4、CAS实现原子操作的三大问题4.1、AB ... [详细]
  • 本文介绍了Python高级网络编程及TCP/IP协议簇的OSI七层模型。首先简单介绍了七层模型的各层及其封装解封装过程。然后讨论了程序开发中涉及到的网络通信内容,主要包括TCP协议、UDP协议和IPV4协议。最后还介绍了socket编程、聊天socket实现、远程执行命令、上传文件、socketserver及其源码分析等相关内容。 ... [详细]
  • 这是原文链接:sendingformdata许多情况下,我们使用表单发送数据到服务器。服务器处理数据并返回响应给用户。这看起来很简单,但是 ... [详细]
  • 我理解在函数的开头和结尾使用pushrbppoprbp来保留rbp调用函数的值,因为rb ... [详细]
  • 这道题做的真的是心碎了,虽然最后也没有靠自己的代码AC,还是靠着别人的代码AC的真的是太菜了附上AC代码,(不是我自己写的)#include<cstdio>#inc ... [详细]
  • Linux使用虚拟机安装Windows 10的方法
    Linux使用虚拟机安装Windows10的方法:Windows10是最新的Windows系统,目前只推出了试用版,不少人已经迫不及待的试用上了,Linux系统中,可使用虚拟机安装 ... [详细]
author-avatar
x将臣x
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有