热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

Java多线程编程实战之模拟大量数据同步

这篇文章主要介绍了Java多线程编程实战之模拟大量数据同步,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

背景

最近对于 Java 多线程做了一段时间的学习,笔者一直认为,学习东西就是要应用到实际的业务需求中的。否则要么无法深入理解,要么硬生生地套用技术只是达到炫技的效果。

不过笔者仍旧认为自己对于多线程掌握不够熟练,不敢轻易应用到生产代码中。这就按照平时工作中遇到的实际问题,脑补了一个很可能存在的业务场景:

已知某公司管理着 1000 个微信服务号,每个服务号有 1w ~ 50w 粉丝不等。假设该公司每天都需要将所有微信服务号的粉丝数据通过调用微信 API 的方式更新到本地数据库。

需求分析

对此需求进行分析,主要存在以下问题:

  • 单个服务号获取粉丝 id,只能每次 1w 按顺序拉取
  • 微信的 API 对于服务商的并发请求数量有限制

单个服务号获取粉丝 id,只能每次 1w 按顺序拉取。这个问题决定了单个公众号在拉取粉丝 id 上,无法分配给多个线程执行。

微信的 API 对于服务商的并发请求数量有限制。这点最容易被忽略,如果我们同时有过多的请求,则会导致接口被封禁。这里可以通过信号量来控制同时执行的线程数量。

为了尽快完成数据同步,根据实际情况:整个数据同步可分为读数据和写数据两个部分。读数据是通过 API 获取,走网络 IO,速度较慢;写数据是写到数据库,速度较快。所以得出结论:需要分配较多的线程进行读数据,较少的线程进行写数据。

设计要点

首先,我们需要确定开启多少个线程(在生产中往往是使用线程池),线程数量需要根据服务器性能来决定,这里我们定为 40 个读取数据线程(将 1000 个公众号分为 40 份,分别在 40 个线程中执行),1个写入数据线程。(具体开多少个线程,取决于线程池的容量,以及可以分配给此业务的数量。具体的数字需要根据实际情况测试得出,比服务器阈值低一些较好。当然,配置允许范围内越大越好)

其次,考虑到微信对于 API 并发请求的限制,需要限制同时执行的线程数,使用java.util.concurrent.Semaphore进行控制,这里我们限制为 20 个(具体的信号量凭证数,取决于同一时间能够执行的线程,跟 API 限制,服务器性能有关)。

然后,我们需要知道数据何时读取、写入完毕,以控制程序逻辑以及终止程序,这里我们使用java.util.concurrent.CountDownLatch进行控制。

最后,我们需要一个数据结构,用来在多个线程中共享处理的数据,此处同步数据的场景非常适合使用队列,这里我们使用线程安全的java.util.concurrent.ConcurrentLinkedQueue来进行处理。(需要注意的是,在实际开发中,队列不能够无限制地增长,这将会很快消耗掉内存,我们需要根据实际情况对队列长度做控制。例如,可以通过控制读取线程数和写入线程数的比例来控制队列的长度)

模拟代码

由于本文重点关注多线程的使用,模拟代码只体现多线程操作的方法。代码里添加了大量的注释,方便各位读者阅读理解。

JDK:1.8

import java.util.Arrays;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;

/**
 * N个线程向队列添加数据
 * 一个线程消费队列数据
 */
public class QueueTest {
  private static List data = Arrays.asList("a", "b", "c", "d", "e");

  private static final int OFFER_COUNT = 40; // 开启的线程数量

  private static Semaphore semaphore = new Semaphore(20); // 同一时间执行的线程数量(大多用于控制API调用次数或数据库查询连接数)

  public static void main(String[] args) throws InterruptedException {
    Queue queue = new ConcurrentLinkedQueue<>(); // 处理队列,需要处理的数据,放置到此队列中

    CountDownLatch offerLatch = new CountDownLatch(OFFER_COUNT); // offer线程latch,每完成一个,latch减一,lacth的count为0时表示offer处理完毕
    CountDownLatch pollLatch = new CountDownLatch(1); // poll线程latch,latch的count为0时,表示poll处理完毕

    Runnable offerRunnable = () -> {
      try {
        semaphore.acquire(); // 信号量控制
      } catch (InterruptedException e) {
        e.printStackTrace();
      }

      try {
        for (String datum : data) {
          queue.offer(datum);
          TimeUnit.SECONDS.sleep(2); // 模拟取数据很慢的情况
        }
      } catch (InterruptedException e) {
        e.printStackTrace();
      } finally {
        // 在finally中执行latch.countDown()以及信号量释放,避免因异常导致没有正常释放
        offerLatch.countDown();
        semaphore.release();
      }
    };

    Runnable pollRunnable = () -> {
      int count = 0;
      try {
        while (offerLatch.getCount() > 0 || queue.size() > 0) { // 只要offer的latch未执行完,或queue仍旧有数据,则继续循环
          String poll = queue.poll();
          if (poll != null) {
            System.out.println(poll);
            count++;
          }
          // 无论是否poll到数据,均暂停一小段时间,可降低CPU消耗
          TimeUnit.MILLISECONDS.sleep(100);
        }
        System.out.println("total count:" + count);
      } catch (InterruptedException e) {
        e.printStackTrace();
      } finally {
        // 在finally中执行latch.countDown(),避免因异常导致没有正常释放
        pollLatch.countDown();
      }
    };

    // 启动线程(生产环境中建议使用线程池)
    new Thread(pollRunnable).start(); // 启动一个poll线程
    for (int i = 0; i 

到这里,本文结束。以上是笔者脑补的一个常见需求的解决方案。

注意:多线程编程对实际环境和需求有很大的依赖,需要根据实际的需求情况对各个参数做调整。实际在使用中,需要尽量模拟生产环境的数据情况来进行测试,对服务器执行期间的并发数,CPU、内存、网络 IO、磁盘 IO 做好观察。并适当地调低并发数,以给服务器留有处理其他请求的余量。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • 优化联通光猫DNS服务器设置
    本文详细介绍了如何为联通光猫配置DNS服务器地址,以提高网络解析效率和访问体验。通过智能线路解析功能,域名解析可以根据访问者的IP来源和类型进行差异化处理,从而实现更优的网络性能。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • 深入理解 SQL 视图、存储过程与事务
    本文详细介绍了SQL中的视图、存储过程和事务的概念及应用。视图为用户提供了一种灵活的数据查询方式,存储过程则封装了复杂的SQL逻辑,而事务确保了数据库操作的完整性和一致性。 ... [详细]
  • 新冠肺炎疫情期间,各大银行积极利用手机银行平台,满足客户在金融与生活多方面的需求。线上服务不仅激活了防疫相关的民生场景,还推动了银行通过互联网思维进行获客、引流与经营。本文探讨了银行在找房、买菜、打卡、教育等领域的创新举措。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 如何配置Unturned服务器及其消息设置
    本文详细介绍了Unturned服务器的配置方法和消息设置技巧,帮助用户了解并优化服务器管理。同时,提供了关于云服务资源操作记录、远程登录设置以及文件传输的相关补充信息。 ... [详细]
  • 尽管某些细分市场如WAN优化表现不佳,但全球运营商路由器和交换机市场持续增长。根据最新研究,该市场预计在2023年达到202亿美元的规模。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
  • 360SRC安全应急响应:从漏洞提交到修复的全过程
    本文详细介绍了360SRC平台处理一起关键安全事件的过程,涵盖从漏洞提交、验证、排查到最终修复的各个环节。通过这一案例,展示了360在安全应急响应方面的专业能力和严谨态度。 ... [详细]
  • 本文详细分析了Hive在启动过程中遇到的权限拒绝错误,并提供了多种解决方案,包括调整文件权限、用户组设置以及环境变量配置等。 ... [详细]
  • 解决MongoDB Compass远程连接问题
    本文记录了在使用阿里云服务器部署MongoDB后,通过MongoDB Compass进行远程连接时遇到的问题及解决方案。详细介绍了从防火墙配置到安全组设置的各个步骤,帮助读者顺利解决问题。 ... [详细]
  • 在现代网络环境中,两台计算机之间的文件传输需求日益增长。传统的FTP和SSH方式虽然有效,但其配置复杂、步骤繁琐,难以满足快速且安全的传输需求。本文将介绍一种基于Go语言开发的新一代文件传输工具——Croc,它不仅简化了操作流程,还提供了强大的加密和跨平台支持。 ... [详细]
  • 网络运维工程师负责确保企业IT基础设施的稳定运行,保障业务连续性和数据安全。他们需要具备多种技能,包括搭建和维护网络环境、监控系统性能、处理突发事件等。本文将探讨网络运维工程师的职业前景及其平均薪酬水平。 ... [详细]
  • 本文将深入探讨PHP编程语言的基本概念,并解释PHP概念股的含义。通过详细解析,帮助读者理解PHP在Web开发和股票市场中的重要性。 ... [详细]
author-avatar
双木子婷_893
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有