热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

Java并发系列之ConcurrentHashMap源码分析

这篇文章主要为大家详细分析了Java并发系列之ConcurrentHashMap源码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

我们知道哈希表是一种非常高效的数据结构,设计优良的哈希函数可以使其上的增删改查操作达到O(1)级别。Java为我们提供了一个现成的哈希结构,那就是HashMap类,在前面的文章中我曾经介绍过HashMap类,知道它的所有方法都未进行同步,因此在多线程环境中是不安全的。为此,Java为我们提供了另外一个HashTable类,它对于多线程同步的处理非常简单粗暴,那就是在HashMap的基础上对其所有方法都使用synchronized关键字进行加锁。这种方法虽然简单,但导致了一个问题,那就是在同一时间内只能由一个线程去操作哈希表。即使这些线程都只是进行读操作也必须要排队,这在竞争激烈的多线程环境中极为影响性能。本篇介绍的ConcurrentHashMap就是为了解决这个问题的,它的内部使用分段锁将锁进行细粒度化,从而使得多个线程能够同时操作哈希表,这样极大的提高了性能。下图是其内部结构的示意图。

1. ConcurrentHashMap有哪些成员变量?

//默认初始化容量
static final int DEFAULT_INITIAL_CAPACITY = 16;

//默认加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;

//默认并发级别
static final int DEFAULT_CONCURRENCY_LEVEL = 16;

//集合最大容量
static final int MAXIMUM_CAPACITY = 1 <<30;

//分段锁的最小数量
static final int MIN_SEGMENT_TABLE_CAPACITY = 2;

//分段锁的最大数量
static final int MAX_SEGMENTS = 1 <<16;

//加锁前的重试次数
static final int RETRIES_BEFORE_LOCK = 2;

//分段锁的掩码值
final int segmentMask;

//分段锁的移位值
final int segmentShift;

//分段锁数组
final Segment[] segments;

在阅读完本篇文章之前,相信读者不能理解这些成员变量的具体含义和作用,不过请读者们耐心看下去,后面将会在具体场景中一一介绍到这些成员变量的作用。在这里读者只需对这些成员变量留个眼熟即可。但是仍有个别变量是我们现在需要了解的,例如Segment数组代表分段锁集合,并发级别则代表分段锁的数量(也意味有多少线程可以同时操作),初始化容量代表整个容器的容量,加载因子代表容器元素可以达到多满的一种程度。

2. 分段锁的内部结构是怎样的?

//分段锁
static final class Segment extends ReentrantLock implements Serializable {
  //自旋最大次数
  static final int MAX_SCAN_RETRIES = Runtime.getRuntime().availableProcessors() > 1 &#63; 64 : 1;
  //哈希表
  transient volatile HashEntry[] table;
  //元素总数
  transient int count;
  //修改次数
  transient int modCount;
  //元素阀值
  transient int threshold;
  //加载因子
  final float loadFactor;
  //省略以下内容
  ...
}

Segment是ConcurrentHashMap的静态内部类,可以看到它继承自ReentrantLock,因此它在本质上是一个锁。它在内部持有一个HashEntry数组(哈希表),并且保证所有对该数组的增删改查方法都是线程安全的,具体是怎样实现的后面会讲到。所有对ConcurrentHashMap的增删改查操作都可以委托Segment来进行,因此ConcurrentHashMap能够保证在多线程环境下是安全的。又因为不同的Segment是不同的锁,所以多线程可以同时操作不同的Segment,也就意味着多线程可以同时操作ConcurrentHashMap,这样就能避免HashTable的缺陷,从而极大的提高性能。

3. ConcurrentHashMap初始化时做了些什么?

//核心构造器
@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
  if (!(loadFactor > 0) || initialCapacity <0 || concurrencyLevel <= 0) {
    throw new IllegalArgumentException();
  }
  //确保并发级别不大于限定值
  if (concurrencyLevel > MAX_SEGMENTS) {
    cOncurrencyLevel= MAX_SEGMENTS;
  }
  int sshift = 0;
  int ssize = 1;
  //保证ssize为2的幂, 且是最接近的大于等于并发级别的数
  while (ssize  MAXIMUM_CAPACITY) {
    initialCapacity = MAXIMUM_CAPACITY;
  }
  //获取每个分段锁的初始容量
  int c = initialCapacity / ssize;
  //分段锁容量总和不小于初始总容量
  if (c * ssize  s0 = new Segment(loadFactor, (int)(cap * loadFactor), (HashEntry[])new HashEntry[cap]);
  //新建指定大小的分段锁数组
  Segment[] ss = (Segment[])new Segment[ssize];
  //使用UnSafe给数组第0个元素赋值
  UNSAFE.putOrderedObject(ss, SBASE, s0);
  this.segments = ss;
}

ConcurrentHashMap有多个构造器,但是上面贴出的是它的核心构造器,其他构造器都通过调用它来完成初始化。核心构造器需要传入三个参数,分别是初始容量,加载因子和并发级别。在前面介绍成员变量时我们可以知道默认的初始容量为16,加载因子为0.75f,并发级别为16。现在我们看到核心构造器的代码,首先是通过传入的concurrencyLevel来计算出ssize,ssize是Segment数组的长度,它必须保证是2的幂,这样就可以通过hash&ssize-1来计算分段锁在数组中的下标。由于传入的concurrencyLevel不能保证是2的幂,所以不能直接用它来当作Segment数组的长度,因此我们要找到一个最接近concurrencyLevel的2的幂,用它来作为数组的长度。假如现在传入的cOncurrencyLevel=15,通过上面代码可以计算出ssize=16,sshift=4。接下来立马可以算出segmentShift=16,segmentMask=15。注意这里的segmentShift是分段锁的移位值,segmentMask是分段锁的掩码值,这两个值是用来计算分段锁在数组中的下标,在下面我们会讲到。在算出分段锁的个数ssize之后,就可以根据传入的总容量来计算每个分段锁的容量,它的值c = initialCapacity / ssize。分段锁的容量也就是HashEntry数组的长度,同样也必须保证是2的幂,而上面算出的c的值不能保证这一点,所以不能直接用c作为HashEntry数组的长度,需要另外找到一个最接近c的2的幂,将这个值赋给cap,然后用cap来作为HashEntry数组的长度。现在我们有了ssize和cap,就可以新建分段锁数组Segment[]和元素数组HashEntry[]了。注意,与JDK1.6不同是的,在JDK1.7中只新建了Segment数组,并没有对它初始化,初始化Segment的操作留到了插入操作时进行。

4. 通过怎样的方式来定位锁和定位元素?

//根据哈希码获取分段锁
@SuppressWarnings("unchecked")
private Segment segmentForHash(int h) {
  long u = (((h >>> segmentShift) & segmentMask) <) UNSAFE.getObjectVolatile(segments, u);
}

//根据哈希码获取元素
@SuppressWarnings("unchecked")
static final  HashEntry entryForHash(Segment seg, int h) {
  HashEntry[] tab;
  return (seg == null || (tab = seg.table) == null) &#63; null :
  (HashEntry) UNSAFE.getObjectVolatile(tab, ((long)(((tab.length - 1) & h)) <

在JDK1.7中是通过UnSafe来获取数组元素的,因此这里比JDK1.6多了些计算数组元素偏移量的代码,这些代码我们暂时不关注,现在我们只需知道下面这两点:
a. 通过哈希码计算分段锁在数组中的下标:(h >>> segmentShift) & segmentMask。
b. 通过哈希码计算元素在数组中的下标:(tab.length - 1) & h。
现在我们假设传给构造器的两个参数为initialCapacity=128, cOncurrencyLevel=16。根据计算可以得到ssize=16, sshift=4,segmentShift=28,segmentMask=15。同样,算得每个分段锁内的HashEntry数组的长度为8,所以tab.length-1=7。根据这些值,我们通过下图来解释如何根据同一个哈希码来定位分段锁和元素。

可以看到分段锁和元素的定位都是通过元素的哈希码来决定的。定位分段锁是取哈希码的高位值(从32位处取起),定位元素是取的哈希码的低位值。现在有个问题,它们一个从32位的左端取起,一个从32位的右端取起,那么会在某个时刻产生冲突吗?我们在成员变量里可以找到MAXIMUM_CAPACITY = 1 <<30,MAX_SEGMENTS = 1 <<16,这说明定位分段锁和定位元素使用的总的位数不超过30,并且定位分段锁使用的位数不超过16,所以至少还隔着2位的空余,因此是不会产生冲突的。

5. 查找元素具体是怎样实现的?

//根据key获取value
public V get(Object key) {
  Segment s;
  HashEntry[] tab;
  //使用哈希函数计算哈希码
  int h = hash(key);
  //根据哈希码计算分段锁的索引
  long u = (((h >>> segmentShift) & segmentMask) <)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) {
    //根据哈希码获取链表头结点, 再对链表进行遍历
    for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile
         (tab, ((long)(((tab.length - 1) & h)) <

在JDK1.6中分段锁的get方法是通过下标来访问数组元素的,而在JDK1.7中是通过UnSafe的getObjectVolatile方法来读取数组中的元素。为啥要这样做?我们知道虽然Segment对象持有的HashEntry数组引用是volatile类型的,但是数组内的元素引用不是volatile类型的,因此多线程对数组元素的修改是不安全的,可能会在数组中读取到尚未构造完成的对象。在JDK1.6中是通过第二次加锁读取来保证安全的,而JDK1.7中通过UnSafe的getObjectVolatile方法来读取同样也是为了保证这一点。使用getObjectVolatile方法读取数组元素需要先获得元素在数组中的偏移量,在这里根据哈希码计算得到分段锁在数组中的偏移量为u,然后通过偏移量u来尝试读取分段锁。由于分段锁数组在构造时没进行初始化,因此可能读出来一个空值,所以需要先进行判断。在确定分段锁和它内部的哈希表都不为空之后,再通过哈希码读取HashEntry数组的元素,根据上面的结构图可以看到,这时获得的是链表的头结点。之后再从头到尾的对链表进行遍历查找,如果找到对应的值就将其返回,否则就返回null。以上就是整个查找元素的过程。

6. 插入元素具体是怎样实现的?

//向集合添加键值对(若存在则替换)
@SuppressWarnings("unchecked")
public V put(K key, V value) {
  Segment s;
  //传入的value不能为空
  if (value == null) throw new NullPointerException();
  //使用哈希函数计算哈希码
  int hash = hash(key);
  //根据哈希码计算分段锁的下标
  int j = (hash >>> segmentShift) & segmentMask;
  //根据下标去尝试获取分段锁
  if ((s = (Segment)UNSAFE.getObject(segments, (j < s;
  //传入的value不能为空
  if (value == null) throw new NullPointerException();
  //使用哈希函数计算哈希码
  int hash = hash(key);
  //根据哈希码计算分段锁的下标
  int j = (hash >>> segmentShift) & segmentMask;
  //根据下标去尝试获取分段锁
  if ((s = (Segment)UNSAFE.getObject(segments, (j <

ConcurrentHashMap中有两个添加键值对的方法,通过put方法添加时如果存在则会进行覆盖,通过putIfAbsent方法添加时如果存在则不进行覆盖,这两个方法都是调用分段锁的put方法来完成操作,只是传入的最后一个参数不同而已。在上面代码中我们可以看到首先是根据key的哈希码来计算出分段锁在数组中的下标,然后根据下标使用UnSafe类getObject方法来读取分段锁。由于在构造ConcurrentHashMap时没有对Segment数组中的元素初始化,所以可能读到一个空值,这时会先通过ensureSegment方法新建一个分段锁。获取到分段锁之后再调用它的put方法完成添加操作,下面我们来看看具体是怎样操作的。

//添加键值对
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
  //尝试获取锁, 若失败则进行自旋
  HashEntry node = tryLock() &#63; null : scanAndLockForPut(key, hash, value);
  V oldValue;
  try {
    HashEntry[] tab = table;
    //计算元素在数组中的下标
    int index = (tab.length - 1) & hash;
    //根据下标获取链表头结点
    HashEntry first = entryAt(tab, index);
    for (HashEntry e = first;;) {
      //遍历链表寻找该元素, 找到则进行替换
      if (e != null) {
        K k;
        if ((k = e.key) == key || (e.hash == hash && key.equals(k))) {
          oldValue = e.value;
          //根据参数决定是否替换旧值
          if (!onlyIfAbsent) {
            e.value = value;
            ++modCount;
          }
          break;
        }
        e = e.next;
      //没找到则在链表添加一个结点
      } else {
        //将node结点插入链表头部
        if (node != null) {
          node.setNext(first);
        } else {
          node = new HashEntry(hash, key, value, first);
        }
        //插入结点后将元素总是加1
        int c = count + 1;
        //元素超过阀值则进行扩容
        if (c > threshold && tab.length 

为保证线程安全,分段锁中的put操作是需要进行加锁的,所以线程一开始就会去获取锁,如果获取成功就继续执行,若获取失败则调用scanAndLockForPut方法进行自旋,在自旋过程中会先去扫描哈希表去查找指定的key,如果key不存在就会新建一个HashEntry返回,这样在获取到锁之后就不必再去新建了,为的是在等待锁的过程中顺便做些事情,不至于白白浪费时间,可见作者的良苦用心。具体自旋方法我们后面再细讲,现在先把关注点拉回来,线程在成功获取到锁之后会根据计算到的下标,获取指定下标的元素。此时获取到的是链表的头结点,如果头结点不为空就对链表进行遍历查找,找到之后再根据onlyIfAbsent参数的值决定是否进行替换。如果遍历没找到就会新建一个HashEntry指向头结点,此时如果自旋时创建了HashEntry,则直接将它的next指向当前头结点,如果自旋时没有创建就在这里新建一个HashEntry并指向头结点。在向链表添加元素之后检查元素总数是否超过阀值,如果超过就调用rehash进行扩容,没超过的话就直接将数组对应下标的元素引用指向新添加的node。setEntryAt方法内部是通过调用UnSafe的putOrderedObject方法来更改数组元素引用的,这样就保证了其他线程在读取时可以读到最新的值。

7. 删除元素具体是怎样实现的?

//删除指定元素(找到对应元素后直接删除)
public V remove(Object key) {
  //使用哈希函数计算哈希码
  int hash = hash(key);
  //根据哈希码获取分段锁的索引
  Segment s = segmentForHash(hash);
  //调用分段锁的remove方法
  return s == null &#63; null : s.remove(key, hash, null);
}

//删除指定元素(查找值等于给定值才删除)
public boolean remove(Object key, Object value) {
  //使用哈希函数计算哈希码
  int hash = hash(key);
  Segment s;
  //确保分段锁不为空才调用remove方法
  return value != null && (s = segmentForHash(hash)) != null && s.remove(key, hash, value) != null;
}

ConcurrentHashMap提供了两种删除操作,一种是找到后直接删除,一种是找到后先比较再删除。这两种删除方法都是先根据key的哈希码找到对应的分段锁后,再通过调用分段锁的remove方法完成删除操作。下面我们来看看分段锁的remove方法。

//删除指定元素
final V remove(Object key, int hash, Object value) {
  //尝试获取锁, 若失败则进行自旋
  if (!tryLock()) {
    scanAndLock(key, hash);
  }
  V oldValue = null;
  try {
    HashEntry[] tab = table;
    //计算元素在数组中的下标
    int index = (tab.length - 1) & hash;
    //根据下标取得数组元素(链表头结点)
    HashEntry e = entryAt(tab, index);
    HashEntry pred = null;
    //遍历链表寻找要删除的元素
    while (e != null) {
      K k;
      //next指向当前结点的后继结点
      HashEntry next = e.next;
      //根据key和hash寻找对应结点
      if ((k = e.key) == key || (e.hash == hash && key.equals(k))) {
        V v = e.value;
        //传入的value不等于v就跳过, 其他情况就进行删除操作
        if (value == null || value == v || value.equals(v)) {
          //如果pred为空则代表要删除的结点为头结点
          if (pred == null) {
            //重新设置链表头结点
            setEntryAt(tab, index, next);
          } else {
            //设置pred结点的后继为next结点
            pred.setNext(next);
          }
          ++modCount;
          --count;
          //记录元素删除之前的值
          oldValue = v;
        }
        break;
      }
      //若e不是要找的结点就将pred引用指向它
      pred = e;
      //检查下一个结点
      e = next;
    }
  } finally {
    unlock();
  }
  return oldValue;
}

在删除分段锁中的元素时需要先获取锁,如果获取失败就调用scanAndLock方法进行自旋,如果获取成功就执行下一步,首先计算数组下标然后通过下标获取HashEntry数组的元素,这里获得了链表的头结点,接下来就是对链表进行遍历查找,在此之前先用next指针记录当前结点的后继结点,然后对比key和hash看看是否是要找的结点,如果是的话就执行下一个if判断。满足value为空或者value的值等于结点当前值这两个条件就会进入到if语句中进行删除操作,否则直接跳过。在if语句中执行删除操作时会有两种情况,如果当前结点为头结点则直接将next结点设置为头结点,如果当前结点不是头结点则将pred结点的后继设置为next结点。这里的pred结点表示当前结点的前继结点,每次在要检查下一个结点之前就将pred指向当前结点,这就保证了pred结点总是当前结点的前继结点。注意,与JDK1.6不同,在JDK1.7中HashEntry对象的next变量不是final的,因此这里可以通过直接修改next引用的值来删除元素,由于next变量是volatile类型的,所以读线程可以马上读到最新的值。

8. 替换元素具体是怎样实现的?

//替换指定元素(CAS操作)
public boolean replace(K key, V oldValue, V newValue) {
  //使用哈希函数计算哈希码
  int hash = hash(key);
  //保证oldValue和newValue不为空
  if (oldValue == null || newValue == null) throw new NullPointerException();
  //根据哈希码获取分段锁的索引
  Segment s = segmentForHash(hash);
  //调用分段锁的replace方法
  return s != null && s.replace(key, hash, oldValue, newValue);
}

//替换元素操作(CAS操作)
final boolean replace(K key, int hash, V oldValue, V newValue) {
  //尝试获取锁, 若失败则进行自旋
  if (!tryLock()) {
    scanAndLock(key, hash);
  }
  boolean replaced = false;
  try {
    HashEntry e;
    //通过hash直接找到头结点然后对链表遍历
    for (e = entryForHash(this, hash); e != null; e = e.next) {
      K k;
      //根据key和hash找到要替换的结点
      if ((k = e.key) == key || (e.hash == hash && key.equals(k))) {
        //如果指定的当前值正确则进行替换
        if (oldValue.equals(e.value)) {
          e.value = newValue;
          ++modCount;
          replaced = true;
        }
        //否则不进行任何操作直接返回
        break;
      }
    }
  } finally {
    unlock();
  }
  return replaced;
}

ConcurrentHashMap同样提供了两种替换操作,一种是找到后直接替换,另一种是找到后先比较再替换(CAS操作)。这两种操作的实现大致是相同的,只是CAS操作在替换前多了一层比较操作,因此我们只需简单了解其中一种操作即可。这里拿CAS操作进行分析,还是老套路,首先根据key的哈希码找到对应的分段锁,然后调用它的replace方法。进入分段锁中的replace方法后需要先去获取锁,如果获取失败则进行自旋,如果获取成功则进行下一步。首先根据hash码获取链表头结点,然后根据key和hash进行遍历查找,找到了对应的元素之后,比较给定的oldValue是否是当前值,如果不是则放弃修改,如果是则用新值进行替换。由于HashEntry对象的value域是volatile类型的,因此可以直接替换。

9. 自旋时具体做了些什么?

//自旋等待获取锁(put操作)
private HashEntry scanAndLockForPut(K key, int hash, V value) {
  //根据哈希码获取头结点
  HashEntry first = entryForHash(this, hash);
  HashEntry e = first;
  HashEntry node = null;
  int retries = -1;
  //在while循环内自旋
  while (!tryLock()) {
    HashEntry f;
    if (retries <0) {
      //如果头结点为空就新建一个node
      if (e == null) {
        if (node == null) {
          node = new HashEntry(hash, key, value, null);
        }
        retries = 0;
      //否则就遍历链表定位该结点
      } else if (key.equals(e.key)) {
        retries = 0;
      } else {
        e = e.next;
      }
     //retries每次在这加1, 并判断是否超过最大值
    } else if (++retries > MAX_SCAN_RETRIES) {
      lock();
      break;
     //retries为偶数时去判断first有没有改变
    } else if ((retries & 1) == 0 && (f = entryForHash(this, hash)) != first) {
      e = first = f;
      retries = -1;
    }
  }
  return node;
}

//自旋等待获取锁(remove和replace操作)
private void scanAndLock(Object key, int hash) {
  //根据哈希码获取链表头结点
  HashEntry first = entryForHash(this, hash);
  HashEntry e = first;
  int retries = -1;
  //在while循环里自旋
  while (!tryLock()) {
    HashEntry f;
    if (retries <0) {
      //遍历链表定位到该结点
      if (e == null || key.equals(e.key)) {
        retries = 0;
      } else {
        e = e.next;
      }
     //retries每次在这加1, 并判断是否超过最大值
    } else if (++retries > MAX_SCAN_RETRIES) {
      lock();
      break;
     //retries为偶数时去判断first有没有改变
    } else if ((retries & 1) == 0 && (f = entryForHash(this, hash)) != first) {
      e = first = f;
      retries = -1;
    }
  }
}

在前面我们讲到过,分段锁中的put,remove,replace这些操作都会要求先去获取锁,只有成功获得锁之后才能进行下一步操作,如果获取失败就会进行自旋。自旋操作也是在JDK1.7中添加的,为了避免线程频繁的挂起和唤醒,以此提高并发操作时的性能。在put方法中调用的是scanAndLockForPut,在remove和replace方法中调用的是scanAndLock。这两种自旋方法大致是相同的,这里我们只分析scanAndLockForPut方法。首先还是先根据hash码获得链表头结点,之后线程会进入while循环中执行,退出该循环的唯一方式是成功获取锁,而在这期间线程不会被挂起。刚进入循环时retries的值为-1,这时线程不会马上再去尝试获取锁,而是先去寻找到key对应的结点(没找到会新建一个),然后再将retries设为0,接下来就会一次次的尝试获取锁,对应retries的值也会每次加1,直到超过最大尝试次数如果还没获取到锁,就会调用lock方法进行阻塞获取。在尝试获取锁的期间,还会每隔一次(retries为偶数)去检查头结点是否被改变,如果被改变则将retries重置回-1,然后再重走一遍刚才的流程。这就是线程自旋时所做的操作,需注意的是如果在自旋时检测到头结点已被改变,则会延长线程的自旋时间。

10. 哈希表扩容时都做了哪些操作?

//再哈希
@SuppressWarnings("unchecked")
private void rehash(HashEntry node) {
  //获取旧哈希表的引用
  HashEntry[] oldTable = table;
  //获取旧哈希表的容量
  int oldCapacity = oldTable.length;
  //计算新哈希表的容量(为旧哈希表的2倍)
  int newCapacity = oldCapacity <<1;
  //计算新的元素阀值
  threshold = (int)(newCapacity * loadFactor);
  //新建一个HashEntry数组
  HashEntry[] newTable = (HashEntry[]) new HashEntry[newCapacity];
  //生成新的掩码值
  int sizeMask = newCapacity - 1;
  //遍历旧表的所有元素
  for (int i = 0; i  e = oldTable[i];
    if (e != null) {
      HashEntry next = e.next;
      //计算元素在新表中的索引
      int idx = e.hash & sizeMask;
      //next为空表明链表只有一个结点
      if (next == null) {
        //直接把该结点放到新表中
        newTable[idx] = e;
      }else {
        HashEntry lastRun = e;
        int lastIdx = idx;
        //定位lastRun结点, 将lastRun之后的结点直接放到新表中
        for (HashEntry last = next; last != null; last = last.next) {
          int k = last.hash & sizeMask;
          if (k != lastIdx) {
            lastIdx = k;
            lastRun = last;
          }
        }
        newTable[lastIdx] = lastRun;
        //遍历在链表lastRun结点之前的元素, 将它们依次复制到新表中
        for (HashEntry p = e; p != lastRun; p = p.next) {
          V v = p.value;
          int h = p.hash;
          int k = h & sizeMask;
          HashEntry n = newTable[k];
          newTable[k] = new HashEntry(h, p.key, v, n);
        }
      }
    }
  }
  //计算传入结点在新表中的下标
  int nodeIndex = node.hash & sizeMask;
  //将传入结点添加到链表头结点
  node.setNext(newTable[nodeIndex]);
  //将新表指定下标元素换成传入结点
  newTable[nodeIndex] = node;
  //将哈希表引用指向新表
  table = newTable;
}

rehash方法在put方法中被调用,我们知道在put方法时会新建元素并添加到哈希数组中,随着元素的增多发生哈希冲突的可能性越大,哈希表的性能也会随之下降。因此每次put操作时都会检查元素总数是否超过阀值,如果超过则调用rehash方法进行扩容。因为数组长度一旦确定则不能再被改变,因此需要新建一个数组来替换原先的数组。从代码中可以知道新创建的数组长度为原数组的2倍(oldCapacity <<1)。创建好新数组后需要将旧数组中的所有元素移到新数组中,因此需要计算每个元素在新数组中的下标。计算新下标的过程如下图所示。

我们知道下标直接取的是哈希码的后几位,由于新数组的容量是直接用旧数组容量右移1位得来的,因此掩码位数向右增加1位,取到的哈希码位数也向右增加1位。如上图,若旧的掩码值为111,则元素下标为101,扩容后新的掩码值为1111,则计算出元素的新下标为0101。由于同一条链表上的元素下标是相同的,现在假设链表所有元素的下标为101,在扩容后该链表元素的新下标只有0101或1101这两种情况,因此数组扩容会打乱原先的链表并将链表元素分成两批。在计算出新下标后需要将元素移动到新数组中,在HashMap中通过直接修改next引用导致了多线程的死锁。虽然在ConcurrentHashMap中通过加锁避免了这种情况,但是我们知道next域是volatile类型的,它的改动能立马被读线程读取到,因此为保证线程安全采用复制元素来迁移数组。但是对链表中每个元素都进行复制有点影响性能,作者发现链表尾部有许多元素的next是不变的,它们在新数组中的下标是相同的,因此可以考虑整体移动这部分元素。具统计实际操作中只有1/6的元素是必须复制的,所以整体移动链表尾部元素(lastRun后面的元素)是可以提升一定性能的。

注:本篇文章基于JDK1.7版本。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • 本文详细介绍了如何利用go-zero框架从需求分析到最终部署至Kubernetes的全过程,特别聚焦于微服务架构中的网关设计与实现。项目采用了go-zero及其生态组件,涵盖了从API设计到RPC调用,再到生产环境下的监控与维护等多方面内容。 ... [详细]
  • 美国网络安全:MITRE Shield 积极防御知识库解析
    本文深入解析了MITRE Shield积极防御知识库,探讨其在网络安全领域的应用及意义。 ... [详细]
  • J2EE平台集成了多种服务、API和协议,旨在支持基于Web的多层应用开发。本文将详细介绍J2EE平台中的13项关键技术规范,涵盖从数据库连接到事务处理等多个方面。 ... [详细]
  • FTP作为一种传统的文件传输协议,广泛用于不同设备间的文件交换。然而,随着网络安全需求的提升及传输效率的要求,选择合适的FTP客户端变得尤为重要。本文将介绍如何利用WinSCP这款强大且安全的工具,实现两台电脑之间的文件高效传输。 ... [详细]
  • 深入解析 RuntimeClass 及多容器运行时应用
    本文旨在探讨RuntimeClass的起源、功能及其在多容器运行时环境中的实际应用。通过详细的案例分析,帮助读者理解如何在Kubernetes集群中高效管理不同类型的容器运行时。 ... [详细]
  • 本文介绍了基于Java的在线办公工作流系统的毕业设计方案,涵盖了MyBatis框架的应用、源代码分析、调试与部署流程、数据库设计以及相关论文撰写指导。 ... [详细]
  • 本文探讨了在不同场景下如何高效且安全地存储Token,包括使用定时器刷新、数据库存储等方法,并针对个人开发者与第三方服务平台的不同需求提供了具体建议。 ... [详细]
  • 2023年1月28日网络安全热点
    涵盖最新的网络安全动态,包括OpenSSH和WordPress的安全更新、VirtualBox提权漏洞、以及谷歌推出的新证书验证机制等内容。 ... [详细]
  • 本文探讨了使用Python实现监控信息收集的方法,涵盖从基础的日志记录到复杂的系统运维解决方案,旨在帮助开发者和运维人员提升工作效率。 ... [详细]
  • 本文旨在探讨Linux系统中两种重要的进程间通信(IPC)机制——System V和POSIX的标准及其特性,为开发者提供深入的理解。 ... [详细]
  • 本文介绍了在Linux系统中如何使用不同的命令和工具来查看和检查端口状态,包括有权限和无权限情况下的操作方法。 ... [详细]
  • 本文介绍如何通过 CSS 设置不同的光标样式,以提升网页的用户体验。 ... [详细]
  • 帝国cms各数据表有什么用
    CMS教程|帝国CMS帝国cmsCMS教程-帝国CMS精易编程助手源码,ubuntu桥接设置,500错误是tomcat吗,爬虫c原理,php会话包括什么,营销seo关键词优化一般多 ... [详细]
  • 本书《Pro Git》深入探讨了 Git 版本控制系统的核心概念与高级功能,旨在帮助开发者和团队有效管理代码变更。通过实例和最佳实践,读者将学习如何利用 Git 提升工作效率。 ... [详细]
  • 春季职场跃迁指南:如何高效利用金三银四跳槽季
    随着每年的‘金三银四’跳槽高峰期的到来,许多职场人士都开始考虑是否应该寻找新的职业机会。本文将探讨如何制定有效的职业规划、撰写吸引人的简历以及掌握面试技巧,助您在这关键时期成功实现职场跃迁。 ... [详细]
author-avatar
Era_zhou
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有