热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Hadoop源码篇解读Mapprer源码outPut输出

一。前述上次讲完MapReduce的输入后,这次开始讲MapReduce的输出。注意MapReduce的原语很重要:“相同”的key为一组,调用一次reduce方法,方法内迭代

一。前述

上次讲完MapReduce的输入后,这次开始讲MapReduce的输出。注意MapReduce的原语很重要:

相同”的key为一组,调用一次reduce方法,方法内迭代这一组数据进行计算!!!!!

二。代码

继续看MapTask任务。

private 
  void runNewMapper(final JobConf job,
                    final TaskSplitIndex splitIndex,
                    final TaskUmbilicalProtocol umbilical,
                    TaskReporter reporter
                    ) throws IOException, ClassNotFoundException,
                             InterruptedException {
    // make a task context so we can get the classes
    org.apache.hadoop.mapreduce.TaskAttemptContext taskCOntext=
      new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, 
                                                                  getTaskID(),
                                                                  reporter);
    // make a mapper
    org.apache.hadoop.mapreduce.Mapper mapper =
      (org.apache.hadoop.mapreduce.Mapper)
        ReflectionUtils.newInstance(taskContext.getMapperClass(), job);
    // make the input format
    org.apache.hadoop.mapreduce.InputFormat inputFormat =
      (org.apache.hadoop.mapreduce.InputFormat)
        ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);
    // rebuild the input split
    org.apache.hadoop.mapreduce.InputSplit split = null;
    split = getSplitDetails(new Path(splitIndex.getSplitLocation()),
        splitIndex.getStartOffset());
    LOG.info("Processing split: " + split);

    org.apache.hadoop.mapreduce.RecordReader input =
      new NewTrackingRecordReader
        (split, inputFormat, reporter, taskContext);
    
    job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
    org.apache.hadoop.mapreduce.RecordWriter output = null;
    
    // get an output object
    if (job.getNumReduceTasks() == 0) {
      output = 
        new NewDirectOutputCollector(taskContext, job, umbilical, reporter);
    } else {
      output = new NewOutputCollector(taskContext, job, umbilical, reporter);源码解析一
    }

    org.apache.hadoop.mapreduce.MapContext 
    mapContext = 
      new MapContextImpl(job, getTaskID(), 
          input, output, 
          committer, 
          reporter, split);

    org.apache.hadoop.mapreduce.Mapper.Context 
        mapperContext = 
          new WrappedMapper().getMapContext(
              mapContext);

    try {
      input.initialize(split, mapperContext);
      mapper.run(mapperContext);
      mapPhase.complete();
      setPhase(TaskStatus.Phase.SORT);
      statusUpdate(umbilical);
      input.close();
      input = null;
      output.close(mapperContext);
      output = null;
    } finally {
      closeQuietly(input);
      closeQuietly(output, mapperContext);
    }
  }

解析一。构造OutPut对象:

 NewOutputCollector(org.apache.hadoop.mapreduce.JobContext jobContext,
                       JobConf job,
                       TaskUmbilicalProtocol umbilical,
                       TaskReporter reporter
                       ) throws IOException, ClassNotFoundException {
      collector = createSortingCollector(job, reporter);//对应解析源码1.2
      partitions = jobContext.getNumReduceTasks();//分区数等于Reduce数,分区数大于分组的概念。
      if (partitions > 1) {
        partitioner = (org.apache.hadoop.mapreduce.Partitioner)
          ReflectionUtils.newInstance(jobContext.getPartitionerClass(), job);//对应源码1.1
      } else {
        partitioner = new org.apache.hadoop.mapreduce.Partitioner() {
          @Override
          public int getPartition(K key, V value, int numPartitions) {
            return partitions - 1;//用户不设置时默认框架一个reduce,并且分区号为0
          }
        };
      }
    }
  @Override
    public void write(K key, V value) throws IOException, InterruptedException {
      collector.collect(key, value,
                        partitioner.getPartition(key, value, partitions));//上下文对象构造写出的值,放在collect缓存区中。
    }


解析1.1

public Classextends Partitioner> getPartitionerClass()
throws ClassNotFoundException {
return (Classextends Partitioner>)
conf.getClass(PARTITIONER_CLASS_ATTR, HashPartitioner.class);//当用户设置取用户的,没设置默认HashPartitioner 对应解析源码1.1.1

解析源码1.2createSortingCollector类的具体实现

 private  MapOutputCollector
          createSortingCollector(JobConf job, TaskReporter reporter)
    throws IOException, ClassNotFoundException {
    MapOutputCollector.Context context =
      new MapOutputCollector.Context(this, job, reporter);

    Class[] collectorClasses = job.getClasses(
      JobContext.MAP_OUTPUT_COLLECTOR_CLASS_ATTR, MapOutputBuffer.class);
    int remainingCollectors = collectorClasses.length;
    for (Class clazz : collectorClasses) {
      try {
        if (!MapOutputCollector.class.isAssignableFrom(clazz)) {
          throw new IOException("Invalid output collector class: " + clazz.getName() +
            " (does not implement MapOutputCollector)");
        }
        Classextends MapOutputCollector> subclazz =
          clazz.asSubclass(MapOutputCollector.class);
        LOG.debug("Trying map output collector class: " + subclazz.getName());
        MapOutputCollector collector =
          ReflectionUtils.newInstance(subclazz, job);
        collector.init(context);//解析源码对应1.2.1
        LOG.info("Map output collector class = " + collector.getClass().getName());
        return collector;
      } catch (Exception e) {
        String msg = "Unable to initialize MapOutputCollector " + clazz.getName();
        if (--remainingCollectors > 0) {
          msg += " (" + remainingCollectors + " more collector(s) to try)";
        }
        LOG.warn(msg, e);
      }
    }
    throw new IOException("Unable to initialize any output collector");
  }

 解析源码1.2.1 缓冲区collect的初始化

 public void init(MapOutputCollector.Context context
                    ) throws IOException, ClassNotFoundException {
      job = context.getJobConf();
      reporter = context.getReporter();
      mapTask = context.getMapTask();
      mapOutputFile = mapTask.getMapOutputFile();
      sortPhase = mapTask.getSortPhase();
      spilledRecordsCounter = reporter.getCounter(TaskCounter.SPILLED_RECORDS);
      partitions = job.getNumReduceTasks();
      rfs = ((LocalFileSystem)FileSystem.getLocal(job)).getRaw();

      //sanity checks
      final float spillper =
        job.getFloat(JobContext.MAP_SORT_SPILL_PERCENT, (float)0.8);//缓冲区溢写阈值,
      final int sortmb = job.getInt(JobContext.IO_SORT_MB, 100);//缓冲区默认单位是100M
      indexCacheMemoryLimit = job.getInt(JobContext.INDEX_CACHE_MEMORY_LIMIT,
                                         INDEX_CACHE_MEMORY_LIMIT_DEFAULT);
      if (spillper > (float)1.0 || spillper <= (float)0.0) {
        throw new IOException("Invalid \"" + JobContext.MAP_SORT_SPILL_PERCENT +
            "\": " + spillper);
      }
      if ((sortmb & 0x7FF) != sortmb) {
        throw new IOException(
            "Invalid \"" + JobContext.IO_SORT_MB + "\": " + sortmb);
      }
      sorter = ReflectionUtils.newInstance(job.getClass("map.sort.class",
            QuickSort.class, IndexedSorter.class), job);//Map从缓冲区往磁盘写文件的时候需要排序,用的快排。
      // buffers and accounting
      int maxMemUsage = sortmb <<20;
      maxMemUsage -= maxMemUsage % METASIZE;
      kvbuffer = new byte[maxMemUsage];
      bufvoid = kvbuffer.length;
      kvmeta = ByteBuffer.wrap(kvbuffer)
         .order(ByteOrder.nativeOrder())
         .asIntBuffer();
      setEquator(0);
      bufstart = bufend = bufindex = equator;
      kvstart = kvend = kvindex;

      maxRec = kvmeta.capacity() / NMETA;
      softLimit = (int)(kvbuffer.length * spillper);
      bufferRemaining = softLimit;
      LOG.info(JobContext.IO_SORT_MB + ": " + sortmb);
      LOG.info("soft limit at " + softLimit);
      LOG.info("bufstart = " + bufstart + "; bufvoid = " + bufvoid);
      LOG.info("kvstart = " + kvstart + "; length = " + maxRec);
 comparator = job.getOutputKeyComparator();//排序所使用的比较器 见源码解析1,2.1.1
      keyClass = (Class)job.getMapOutputKeyClass();
      valClass = (Class)job.getMapOutputValueClass();
      serializatiOnFactory= new SerializationFactory(job);
      keySerializer = serializationFactory.getSerializer(keyClass);
      keySerializer.open(bb);
      valSerializer = serializationFactory.getSerializer(valClass);
      valSerializer.open(bb);
// combiner
      final Counters.Counter combineInputCounter =
        reporter.getCounter(TaskCounter.COMBINE_INPUT_RECORDS);
      combinerRunner = CombinerRunner.create(job, getTaskID(), //map端的组合
                                             combineInputCounter,
                                             reporter, null);
      if (combinerRunner != null) {
        final Counters.Counter combineOutputCounter =
          reporter.getCounter(TaskCounter.COMBINE_OUTPUT_RECORDS);
        combineCollector= new CombineOutputCollector(combineOutputCounter, reporter, job);
      } else {
        combineCollector = null;
      }

      spillInProgress = false;
      minSpillsForCombine = job.getInt(JobContext.MAP_COMBINE_MIN_SPILLS, 3);//小文件最少是3时,会合并小文件。
      spillThread.setDaemon(true);//线程是另外一个线程负责写的 见解析源码1.2.1.2
      spillThread.setName("SpillThread");
      spillLock.lock();

总结:Mappper输出到缓冲区默认是100M,写到0.8时,会溢写!!!!这块可以调优。通过来回折半来调比如第一次调整50% 然后再80%中减小 70% 然后60%来回折半。

          Combine一定要注意,比如求平均值

 解析1,2.1.1排序比较器的实现

 

 public RawComparator getOutputKeyComparator() {
    Classextends RawComparator> theClass = getClass(
      JobContext.KEY_COMPARATOR, null, RawComparator.class);字典排序 默认
    if (theClass != null)
      return ReflectionUtils.newInstance(theClass, this);
    return WritableComparator.get(getMapOutputKeyClass().asSubclass(WritableComparable.class), this);//如果用户没有设置排序比较器,就是Key类型自己的比较器,所以Key必须实现序列化,反序列化,比较器。
  }

 

总结:框架默认使用Key的比较器,字典排序 默认,用户也可以覆盖Key的比较器,自定义。!!!

 

解析源码1.2.1.2 溢写线程做的事
protected class SpillThread extends Thread {

      @Override
      public void run() {
        spillLock.lock();
        spillThreadRunning = true;
        try {
          while (true) {
            spillDone.signal();
            while (!spillInProgress) {
              spillReady.await();
            }
            try {
              spillLock.unlock();
              sortAndSpill();//排序溢写
            } catch (Throwable t) {
              sortSpillException = t;
            } finally {
              spillLock.lock();
              if (bufend < bufstart) {
                bufvoid = kvbuffer.length;
              }
              kvstart = kvend;
              bufstart = bufend;
              spillInProgress = false;
            }
          }
        } catch (InterruptedException e) {
          Thread.currentThread().interrupt();
        } finally {
          spillLock.unlock();
          spillThreadRunning = false;
        }
      }
    }

总结:Map往缓冲区写入东西,线程把缓冲区中的内容做溢写,开始排序,溢写使用快排!!!Combine也在内存中,buffer也在内存,这些计算逻辑都在内存中,排序算法也在内存中,因为Map方法在内存中,这是第一次Combine,从Buffer产生一堆小文件的时候,然后一堆小文件在合并的时候还会执行一次Combine,这次有条件限制(小文件数量大于3)。

 

 

 

解析源码1.1.1

public class HashPartitioner extends Partitioner {

  /** Use {@link Object#hashCode()} to partition. */
  public int getPartition(K key, V value,
                          int numReduceTasks) {
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;!!!
  }
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;!!!重要取分区的写法!!

总结1.以上源码来源于 output = new NewOutputCollector(taskContext, job, umbilical, reporter);所以可得出在输出构造的时候需要构造一个分区器。要么是0的,要么是用户设置的,要么是默认的。
总结2.在输出构造中,有缓冲区的设置。
总结3,以上方法都是OutPut的初始化。
总结4.Map输出的K,V变成K,V,P然后写入到环形缓冲区,内存缓存区80%,然后溢写排序,(先按分区排序,然后再按Key的组排序),然后生成小文件,然后合并,用的归并算法,此时小文件已经是内部有序的,所以使用归并算法,一次io即可。

 

持续更新中。。。。,欢迎大家关注我的公众号LHWorld.

 

 

 


推荐阅读
  • 技术日志:深入探讨Spark Streaming与Spark SQL的融合应用
    技术日志:深入探讨Spark Streaming与Spark SQL的融合应用 ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
  • FastDFS Nginx 扩展模块的源代码解析与技术剖析
    FastDFS Nginx 扩展模块的源代码解析与技术剖析 ... [详细]
  • 本文深入探讨了CGLIB BeanCopier在Bean对象复制中的应用及其优化技巧。相较于Spring的BeanUtils和Apache的BeanUtils,CGLIB BeanCopier在性能上具有显著优势。通过详细分析其内部机制和使用场景,本文提供了多种优化方法,帮助开发者在实际项目中更高效地利用这一工具。此外,文章还讨论了CGLIB BeanCopier在复杂对象结构和大规模数据处理中的表现,为读者提供了实用的参考和建议。 ... [详细]
  • PHP中元素的计量单位是什么? ... [详细]
  • 在Hive中合理配置Map和Reduce任务的数量对于优化不同场景下的性能至关重要。本文探讨了如何控制Hive任务中的Map数量,分析了当输入数据超过128MB时是否会自动拆分,以及Map数量是否越多越好的问题。通过实际案例和实验数据,本文提供了具体的配置建议,帮助用户在不同场景下实现最佳性能。 ... [详细]
  • 为了确保iOS应用能够安全地访问网站数据,本文介绍了如何在Nginx服务器上轻松配置CertBot以实现SSL证书的自动化管理。通过这一过程,可以确保应用始终使用HTTPS协议,从而提升数据传输的安全性和可靠性。文章详细阐述了配置步骤和常见问题的解决方法,帮助读者快速上手并成功部署SSL证书。 ... [详细]
  • 本文详细解析了 Android 系统启动过程中的核心文件 `init.c`,探讨了其在系统初始化阶段的关键作用。通过对 `init.c` 的源代码进行深入分析,揭示了其如何管理进程、解析配置文件以及执行系统启动脚本。此外,文章还介绍了 `init` 进程的生命周期及其与内核的交互方式,为开发者提供了深入了解 Android 启动机制的宝贵资料。 ... [详细]
  • 为了在Hadoop 2.7.2中实现对Snappy压缩和解压功能的原生支持,本文详细介绍了如何重新编译Hadoop源代码,并优化其Native编译过程。通过这一优化,可以显著提升数据处理的效率和性能。此外,还探讨了编译过程中可能遇到的问题及其解决方案,为用户提供了一套完整的操作指南。 ... [详细]
  • C++ 异步编程中获取线程执行结果的方法与技巧及其在前端开发中的应用探讨
    本文探讨了C++异步编程中获取线程执行结果的方法与技巧,并深入分析了这些技术在前端开发中的应用。通过对比不同的异步编程模型,本文详细介绍了如何高效地处理多线程任务,确保程序的稳定性和性能。同时,文章还结合实际案例,展示了这些方法在前端异步编程中的具体实现和优化策略。 ... [详细]
  • 在Android应用开发中,实现与MySQL数据库的连接是一项重要的技术任务。本文详细介绍了Android连接MySQL数据库的操作流程和技术要点。首先,Android平台提供了SQLiteOpenHelper类作为数据库辅助工具,用于创建或打开数据库。开发者可以通过继承并扩展该类,实现对数据库的初始化和版本管理。此外,文章还探讨了使用第三方库如Retrofit或Volley进行网络请求,以及如何通过JSON格式交换数据,确保与MySQL服务器的高效通信。 ... [详细]
  • 本指南从零开始介绍Scala编程语言的基础知识,重点讲解了Scala解释器REPL(读取-求值-打印-循环)的使用方法。REPL是Scala开发中的重要工具,能够帮助初学者快速理解和实践Scala的基本语法和特性。通过详细的示例和练习,读者将能够熟练掌握Scala的基础概念和编程技巧。 ... [详细]
  • 在Kohana 3框架中,实现最优的即时消息显示方法是许多开发者关注的问题。本文将探讨如何高效、优雅地展示flash消息,包括最佳实践和技术细节,以提升用户体验和代码可维护性。 ... [详细]
  • 本文探讨了 Java 中 Pair 类的历史与现状。虽然 Java 标准库中没有内置的 Pair 类,但社区和第三方库提供了多种实现方式,如 Apache Commons 的 Pair 类和 JavaFX 的 javafx.util.Pair 类。这些实现为需要处理成对数据的开发者提供了便利。此外,文章还讨论了为何标准库未包含 Pair 类的原因,以及在现代 Java 开发中使用 Pair 类的最佳实践。 ... [详细]
  • Hadoop的分布式架构改进与应用
    nsitionalENhttp:www.w3.orgTRxhtml1DTDxhtml1-transitional.dtd ... [详细]
author-avatar
尹琢抵
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有