热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Hadoop分布式文件系统和对象存储的区别

最近在Quora上有人提到一个问题,有关Hadoop分布式文件系统和OpenStack对象存储的不同。问题原文如下:“HDFS(Hadoop分布式文件系统)和OpenStack对象存储(OpenStackObjectStorage)似乎都有着相似的目的:实现冗余、快速、联网的存储。什么样的技术特

  最近在Quora上有人提到一个问题,有关Hadoop分布式文件系统和OpenStack对象存储的不同。

  问题原文如下:

  “HDFS (Hadoop分布式文件系统)和OpenStack对象存储(OpenStack Object Storage)似乎都有着相似的目的:实现冗余、快速、联网的存储。什么样的技术特性让这两种系统因而不一样?这两种存储系统最终趋于融合是否大有意义?”

  问题提出之后,很快有OpenStack的开发者进行了回复。本文在此摘抄了前两名回复进行翻译,以供各位参考。

  排名第一的答案来自RackSpace的OpenStack Swift开发者Chuck Their:

  虽然HDFS与Openstack对象存储(Swift)之间有着一些相似之处,但是这两种系统的总体设计却大不一样。

  1. HDFS使用了中央系统来维护文件元数据(Namenode,名称节点),而在Swift中,元数据呈分布式,跨集群复制。使用一种中央元数据系统对HDFS来说无异于单一故障点,因而扩展到规模非常大的环境显得更困难。

  2. Swift在设计时考虑到了多租户架构,而HDFS没有多租户架构这个概念。

  3. HDFS针对更庞大的文件作了优化(这是处理数据时通常会出现的情况),Swift被设计成了可以存储任何大小的文件。

  4. 在HDFS中,文件写入一次,而且每次只能有一个文件写入;而在Swift中,文件可以写入多次;在并发操作环境下,以最近一次操作为准。

  5. HDFS用Java来编写,而Swift用Python来编写。

  另外,HDFS被设计成了可以存储数量中等的大文件,以支持数据处理,而Swift被设计成了一种比较通用的存储解决方案,能够可靠地存储数量非常多的大小不一的文件。

  排名第二的答案来自Joshua McKenty,他是美国宇航局Nebula云计算项目的首席架构师,是OpenStack Nova软件的早期开发者之一,目前是OpenStack项目监管委员会的成员,还是Piston.cc这家基于OpenStack的公司的创始人。

  Chuck刚才详细介绍了两者的技术差异,但是没有讨论两者可想而知的融合,OpenStack设计峰会上抛出了融合这个话题。简而言之,HDFS被设计成可以使用Hadoop,跨存储环境里面的对象实现MapReduce处理。对于许多OpenStack公司(包括我自己的公司)来说,支持Swift里面的处理是路线图上面的一个目标,不过不是每个人都认为MapReduce是解决之道。

  我们已讨论过为HDFS编写包装器,这将支持OpenStack内部存储应用编程接口(API),并且让用户可以针对该数据来执行Hadoop查询。还有一个办法就是在Swift里面使用HDFS。但是这些方法似乎没有一个是理想的。

  OpenStack社区方面也在开展研究开发方面的一些工作,认真研究其他替代性的MapReduce框架(Riak和CouchDB等)。

  最后,现在有别的一些存储项目,目前“隶属于”OpenStack社区(SheepDog和HC2)。充分利用数据局部性,并且让对象存储变得“更智能”,这是预计会取得进步的一个领域。


推荐阅读
  • 深入解析BookKeeper的设计与应用场景
    本文介绍了由Yahoo在2009年开发并于2011年开源的BookKeeper技术。BookKeeper是一种高效且可靠的日志流存储解决方案,广泛应用于需要高性能和强数据持久性的场景。 ... [详细]
  • 深入解析Hadoop的核心组件与工作原理
    本文详细介绍了Hadoop的三大核心组件:分布式文件系统HDFS、资源管理器YARN和分布式计算框架MapReduce。通过分析这些组件的工作机制,帮助读者更好地理解Hadoop的架构及其在大数据处理中的应用。 ... [详细]
  • MapReduce原理是怎么剖析的
    这期内容当中小编将会给大家带来有关MapReduce原理是怎么剖析的,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。1 ... [详细]
  • HBase运维工具全解析
    本文深入探讨了HBase常用的运维工具,详细介绍了每种工具的功能、使用场景及操作示例。对于HBase的开发人员和运维工程师来说,这些工具是日常管理和故障排查的重要手段。 ... [详细]
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 全面解析运维监控:白盒与黑盒监控及四大黄金指标
    本文深入探讨了白盒和黑盒监控的概念,以及它们在系统监控中的应用。通过详细分析基础监控和业务监控的不同采集方法,结合四个黄金指标的解读,帮助读者更好地理解和实施有效的监控策略。 ... [详细]
  • 从码农到创业者:我的职业转型之路
    在观察了众多同行的职业发展后,我决定分享自己的故事。本文探讨了为什么大多数程序员难以成为架构师,并阐述了我从一家外企离职后投身创业的心路历程。 ... [详细]
  • 本文探讨了Hive作业中Map任务数量的确定方式,主要涉及HiveInputFormat和CombineHiveInputFormat两种InputFormat的分片计算逻辑。通过调整相关参数,可以有效控制Map任务的数量,进而优化Hive作业的性能。 ... [详细]
  • 深入解析Spark核心架构与部署策略
    本文详细探讨了Spark的核心架构,包括其运行机制、任务调度和内存管理等方面,以及四种主要的部署模式:Standalone、Apache Mesos、Hadoop YARN和Kubernetes。通过本文,读者可以深入了解Spark的工作原理及其在不同环境下的部署方式。 ... [详细]
  • 深入解析:主流开源分布式文件系统综述
    本文详细探讨了几款主流的开源分布式文件系统,包括HDFS、MooseFS、Lustre、GlusterFS和CephFS,重点分析了它们的元数据管理和数据一致性机制,旨在为读者提供深入的技术见解。 ... [详细]
  • 大数据时代的机器学习:人工特征工程与线性模型的局限
    本文探讨了在大数据背景下,人工特征工程与线性模型的应用及其局限性。随着数据量的激增和技术的进步,传统的特征工程方法面临挑战,文章提出了未来发展的可能方向。 ... [详细]
  • 本文介绍了Hive作为基于Hadoop的数据仓库工具的核心概念,包括其基本功能、使用理由、特点以及与Hadoop的关系。同时,文章还探讨了Hive相较于传统关系型数据库的不同之处,并展望了Hive的发展前景。 ... [详细]
  • 本文探讨了2012年4月期间,淘宝在技术架构上的关键数据和发展历程。涵盖了从早期PHP到Java的转型,以及在分布式计算、存储和网络流量管理方面的创新。 ... [详细]
  • 离线安装Grafana Cloudera Manager插件并监控CDH集群
    本文详细介绍如何离线安装Cloudera Manager (CM) 插件,并通过Grafana监控CDH集群的健康状况和资源使用情况。该插件利用CM提供的API接口进行数据获取和展示。 ... [详细]
  • Alluxio 1.5.0 版本发布:增强功能与优化
    Alluxio 1.5.0 开源版本引入了多项新特性和改进,旨在提升数据访问速度和系统互操作性。 ... [详细]
author-avatar
手机用户2502916567
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有