热门标签 | HotTags
当前位置:  开发笔记 > 开发工具 > 正文

HOG特征提取原理and计算步骤,方向梯度直方图

HOG简介方向梯度直方图(HistogramofOrientedGradient,HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子

HOG简介

        方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。        


原理

        其实本质就是梯度的统计信息,而梯度主要存在于边缘的地方。在一副图像中,局部目标的表象和形状(appearance and shape)能够被梯度或边缘的方向密度分布很好地描述。


方法

        Hog特征提取主要依靠于三个参数: 检测窗口、块(block)、细胞单元。假定提取参数为      winSize(64,128), blockSize(16,16), blockStride(8,8), cellSize(8,8),nbins(9)
其中nBins表示在一个胞元(cell)中统计梯度的方向数目,例如nBins=9时,在一个胞元内统计9个方向的梯度直方图,每个方向为180/9=20度

Hog特征提取中最小的统计单位,我们把它叫细胞单元(cell)。采集细胞单元中各像素点的梯度的或边缘的方向直方图。最后把这些直方图组合起来就可以构成特征描述器。

        性能提升 :把每个Block进行对比度归一化(contrast-normalized),所采用的方法是:先计算各直方图在这个区间(block)中的密度,然后根据这个密度对区间中的各个细胞单元做归一化。通过这个归一化后,能对光照变化和阴影获得更好的效果。具体步骤中第5点所述。


具体步骤

HOG提取流程图如下

以一个检测窗口提取HOG为例
1. 灰度化
2.Gamma归一化

        采用Gamma校正法对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰;
        其实就是对像素点做 幂率 处理

 梯度大小就是作为投影的权值,比如某个像素的梯度方向是20-40度,然后它的梯度大小是100, 那么直方图第2个bin的计数就在原基础上+100.

5.Block梯度强度归一化
之前就提到了,多个cell组成一个block。
        由于局部光照的变化以及前景-背景对比度的变化,使得梯度强度的变化范围非常大。这就需要对梯度强度做归一化。归一化能够进一步地对光照、阴影和边缘进行压缩。
        把各个细胞单元组合成大的、空间上连通的区间(blocks)。这样,一个block内所有cell的特征向量串联起来便得到该block的HOG特征。这些区间是互有重叠的,这就意味着:每一个单元格的特征会以不同的结果多次出现在最后的特征向量中。我们将归一化之后的块描述符(向量)就称之为HOG描述符。

 

6.收集HOG特征

        最后一步就是将检测窗口中所有重叠的块进行HOG特征的收集,并将它们结合成最终的特征向量供分类使用。

7.一个图像的HOG特征维数总共有多少呢?

        对于128*64的图像,cell为8*8,2*2个cell组成一个block,则block为16*16,每个像素9个梯度方向,则每个block内有 9*2*2=36,滑动步长为8像素,则水平方向有128/8 -1 =  15个扫描窗口,垂直方向有64/8 -1 = 7个扫描窗口,所以 总共有 36 * 15 * 7 = 3780个特征
        所以HOG特征维数 取决于一个block内有多少个cell和滑动步长


推荐阅读
  • 在《Cocos2d-x学习笔记:基础概念解析与内存管理机制深入探讨》中,详细介绍了Cocos2d-x的基础概念,并深入分析了其内存管理机制。特别是针对Boost库引入的智能指针管理方法进行了详细的讲解,例如在处理鱼的运动过程中,可以通过编写自定义函数来动态计算角度变化,利用CallFunc回调机制实现高效的游戏逻辑控制。此外,文章还探讨了如何通过智能指针优化资源管理和避免内存泄漏,为开发者提供了实用的编程技巧和最佳实践。 ... [详细]
  • 您的数据库配置是否安全?DBSAT工具助您一臂之力!
    本文探讨了Oracle提供的免费工具DBSAT,该工具能够有效协助用户检测和优化数据库配置的安全性。通过全面的分析和报告,DBSAT帮助用户识别潜在的安全漏洞,并提供针对性的改进建议,确保数据库系统的稳定性和安全性。 ... [详细]
  • 优化Vite 1.0至2.0升级过程中遇到的某些代码块过大问题解决方案
    本文详细探讨了在将项目从 Vite 1.0 升级到 2.0 的过程中,如何解决某些代码块过大的问题。通过具体的编码示例,文章提供了全面的解决方案,帮助开发者有效优化打包性能。 ... [详细]
  • 如何将TS文件转换为M3U8直播流:HLS与M3U8格式详解
    在视频传输领域,MP4虽然常见,但在直播场景中直接使用MP4格式存在诸多问题。例如,MP4文件的头部信息(如ftyp、moov)较大,导致初始加载时间较长,影响用户体验。相比之下,HLS(HTTP Live Streaming)协议及其M3U8格式更具优势。HLS通过将视频切分成多个小片段,并生成一个M3U8播放列表文件,实现低延迟和高稳定性。本文详细介绍了如何将TS文件转换为M3U8直播流,包括技术原理和具体操作步骤,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 在《数字图像处理及应用(MATLAB)第4章》中,详细探讨了“逢七必过”游戏规则的实现方法,并结合数字图像处理技术进行了深入分析。本章通过丰富的实例和代码示例,展示了如何利用MATLAB实现这一游戏规则,并介绍了数字图像处理的基本原理和技术应用。内容涵盖了图像增强、滤波、边缘检测等多个方面,为读者提供了全面的技术支持和实践指导。 ... [详细]
  • 提升视觉效果:Unity3D中的HDR与Bloom技术(高动态范围成像与光线散射)
    提升视觉效果:Unity3D中的HDR与Bloom技术(高动态范围成像与光线散射) ... [详细]
  • 卓盟科技:动态资源加载技术的兼容性优化与升级 | Android 开发者案例分享
    随着游戏内容日益复杂,资源加载过程已不仅仅是简单的进度显示,而是连接玩家与开发者的桥梁。玩家对快速加载的需求越来越高,这意味着开发者需要不断优化和提升动态资源加载技术的兼容性和性能。卓盟科技通过一系列的技术创新,不仅提高了加载速度,还确保了不同设备和系统的兼容性,为用户提供更加流畅的游戏体验。 ... [详细]
  • MATLAB人体行为检测与识别
    人体行为检测与识别摘要人体行为检测与识别是当前研究的重点,具有很高的研究价值和广阔的应用前景。主要应用在型人机交互、运动分析、智能监控和虚拟现实也称灵境技术ÿ ... [详细]
  • 到了今天,已经很少有人再提人工智能音箱了。使用率低、售价跳水、缺乏销售数据……我们不能武断地说智能音箱凉了,但的确不少所谓的AI企业的硬件梦碎了。相对于一 ... [详细]
  • 我是如何快速拿下datacastle图像识别竞赛“猫狗大战”冠军的 | 含全代码和详细说明...
    接触数据挖掘快有一年了,早期在学生团队做过一些D3数据可视化方面的工作,今年上半年开始数据挖掘实践。想把这个爱好发展成事业。有在kaggle混迹 ... [详细]
  • 圣诞节到了,智能菌想送你一份礼物
    关注网易智能,聚焦AI大事件,读懂下一个大时代!(机器学习算法地图见文末)圣诞节的赠书活动来了! ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • 开发笔记:图像识别基于主成分分析算法实现人脸二维码识别
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了图像识别基于主成分分析算法实现人脸二维码识别相关的知识,希望对你有一定的参考价值。 ... [详细]
  • 1.活体相关文献综述调研参考:https:blog.csdn.netCVAIDLarticledetails845673192.基于LBP纹理特征的检测1)基于LBP_256特征提 ... [详细]
  • 机器学习之数据均衡算法种类大全+Python代码一文详解
    目录前言一、为什么要做数据均衡?二、数据场景1.大数据分布不均衡2.小数据分布不均衡三、均衡算法类型1.过采样2.欠采样3.组合采样四、算法具体种类1 ... [详细]
author-avatar
传导网络
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有